Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35566934

RESUMO

Within the herein presented research, we studied the applicability of flax fabrics for composite parts in personal watercrafts in order to enhance damping of vibrations from the engine and noise reduction (which is relatively high for contemporary carbon constructions). Since the composite parts are intended to be exposed to humid environments requiring high levels of mechanical properties, a carbon-flax composite was selected. Samples of carbon, fiberglass, flax, and hybrid carbon-flax twill and biax fabrics were subjected to tensile and three-point bending tests. The mechanical properties were also tested after exposure of the samples to a humid environment. Damping was assessed by vibration and noise measurements directly on the complete float for samples as well as real parts. The hybrid carbon-flax material exhibited lower values of tensile strength than the carbon material (760 MPa compared to 463 MPa), but, at the same time, significantly higher than the other tested materials, or flax itself (115 MPa for a twill fabric). A similar trend in the results was observed for the three-point bending tests. Vibration tests and noise measurements showed reductions in vibration amplitude and frequency when using the carbon-flax hybrid material; the frequency response function for the watercraft part assembled from the hybrid material was 50% lower than for that made of carbon. Testing of samples located in a humid environment showed the necessity of surface treatment to prevent moisture absorption (mechanical properties were reduced at minimum by 28%). The tests confirmed that the hybrid material is satisfactory in terms of strength and its contribution to noise and vibration damping.

2.
Materials (Basel) ; 14(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279286

RESUMO

This paper is devoted to the possibilities of the utilization of chosen chemical heat treatment technologies on steels used for manufacturing highly stressed components of military vehicles and weapons systems. The technologies chosen for this research are plasma ferritic nitrocarburizing and ferritic nitrocarburizing in a gaseous atmosphere. These technologies were applied on a steel equivalent 1.5752 (i.e., CSN 41 6426), which is suitable for carburizing. Chemical composition of the steel was verified by optical emission spectrometry. An observation of a microstructure and an assessment of the parameters of obtained white layers were performed by optical microscopy. Morphology and porosity of the surface were observed by electron microscopy. The depth of diffusion layers was evaluated in accordance with ISO 18203:2016(E) from the results of microhardness measurements. A friction coefficient was obtained as a result of measurements in accordance with a linearly reciprocating ball-on-flat sliding wear method. Wear resistance was assessed by employing the scratch test method and a profilometry. The profilometry was also utilized for surface roughness assessment. It was proved that both tested chemical heat treatment technologies are suitable for surface treatment of the selected steel. Both technologies, ferritic nitrocarburizing in plasma and a gaseous atmosphere, are beneficial for the improvement of surface properties and could lead to a suppression of geometrical deformation in comparison with frequently utilized carburizing. Moreover, the paper presents a procedure that creates a white layer-less ferritic nitrocarburized surface by utilizing an appropriate modification of chemical heat treatment parameters, thus subsequent machining is no longer required.

3.
Materials (Basel) ; 14(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922722

RESUMO

This study investigated the possibility of nitride NiTi instruments using low-temperature plasma nitriding technology in a standard industrial device. Changes in the properties and fatigue life of used NiTi instruments before and after low-temperature nitriding application were investigated and compared. Nontreated and two series of plasma-nitrided NiTi instruments, designed by Mtwo company with tip sizes of 10/.04 taper, 15/.05 taper, and 20/.06 taper, were experimentally tested in this study. All these instruments were used and discarded from clinical use. The instruments were tested in an artificial canal made of stainless steel with an inner diameter of 1.5 mm, a 60° angle of curvature, and a radius of curvature of 3 mm. A low-temperature plasma nitriding process was used for the surface treatment of dental files using two different processes: 550 °C for 20 h, and 470 °C for 4 h. The results proved that it is possible to nitride dental instruments made of NiTi with a low-temperature plasma nitriding process. Promising results were achieved in trial testing by NiTi instruments nitrided at a higher temperature. Plasma-nitrided files were found to have, in some cases, significantly higher values than nontreated files in terms of fatigue life. The results showed that the nitriding process offers promising possibilities for suitably modified surface properties and quality of surface layer of NiTi instruments. Within the limitations of the present study, the cyclic fatigue life of plasma-nitrided NiTi dental files can be increased using this surface technology.

4.
Materials (Basel) ; 14(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34443172

RESUMO

Cutting tools have long been coated with an AlCrN hard coating system that has good mechanical and tribological qualities. Boron (B) and vanadium (V) additions to AlCrN coatings were studied for their mechanical and tribological properties. Cathodic multi-arc evaporation was used to successfully manufacture the AlCrBN and AlCrVN coatings. These multicomponent coatings were applied to the untreated and plasma-nitrided surfaces of HS6-5-2 and H13 steels, respectively. Nanoindentation and Vickers micro-hardness tests were used to assess the mechanical properties of the materials. Ball-on-flat wear tests with WC-Co balls as counterparts were used to assess the friction-wear capabilities. Nanoindentation tests demonstrated that AlCrBN coating has a higher hardness (HIT 40.9 GPa) than AlCrVN coating (39.3 GPa). Steels' wear resistance was significantly increased by a hybrid treatment that included plasma nitriding and hard coatings. The wear volume was 3% better for the AlCrBN coating than for the AlCrVN coating on H13 nitrided steel, decreasing by 89% compared to the untreated material. For HS6-5-2 steel, the wear volume was almost the same for both coatings but decreased by 77% compared to the untreated material. Boron addition significantly improved the mechanical, tribological, and adhesive capabilities of the AlCrN coating.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa