Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 31(4): 773-784, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32150403

RESUMO

The effects of liquid and gas phase additives (chemical modifiers) on the ion signal distribution for Substance P (SP), recorded with a nanoelectrospray setup, are evaluated. Depletion of the higher charge state of Substance P ([SP+3H]3+) is observed with polar protic gas phase modifiers. This is attributed to their ability to form larger hydrogen-bonded clusters, whose proton affinity increases with cluster size. These clusters are able to deprotonate the higher charge state. "Supercharging agents" (SCAs) as well as aprotic polar gas phase modifiers, which promote the retention of the higher charge state of Substance P, do not form such large clusters under the given conditions and are therefore not able to deprotonate Substance P. Both SCAs and aprotic modifiers form clusters with the higher charge state, leading to stabilization of the charge. Whereas supercharging agents have low vapor pressures and are therefore enriched in late-stage electrospray droplets, the gas phase modifiers are volatile organic solvents. Collision induced dissociation experiments revealed that the addition of a modifier significantly delays the droplet evaporation and ion release process. This indicates that the droplet takes up the gas phase modifier to a certain extent (accommodation). Depending on the modifier's properties either charge depletion or retention may eventually be promoted.


Assuntos
Espectrometria de Massas por Ionização por Electrospray/métodos , Substância P/química , Arginina/química , Dimetil Sulfóxido/química , Ligação de Hidrogênio , Lisina/química , Prótons , Solventes/química , Tiofenos/química
2.
J Am Soc Mass Spectrom ; 31(4): 785-795, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32150409

RESUMO

Gas phase modification in ESI-MS can significantly alter the charge state distribution of small peptides and proteins. The preceding paper presented a systematic experimental study on this topic using Substance P and proposed a charge retention/charge depletion mechanism, explaining different gas- and liquid-phase modifications [Thinius et al. J. Am. Soc. Mass Spec. 2020, 10.1021/jasms.9b00044]. In this work, we aim to support this rational by theoretical investigations on the proton transfer processes from (multiply) charged analytes toward solvent clusters. As model systems we use small (di)amines as analytes and methanol (MeOH) and acetonitrile (ACN) as gas phase modifiers. The calculations are supported by a set of experiments using (di)amines, to bridge the gap between the present model system and Substance P used in the preceding study. Upon calculation of the thermochemical stability as well as the proton transfer pathways, we find that both ACN and MeOH form stable adduct clusters at the protonation site. MeOH can form large clusters through a chain of H-bridges, eventually lowering the barriers for proton transfer to an extent that charge transfer from the analyte to the MeOH cluster becomes feasible. ACN, however, cannot form H-bridged structures due to its aprotic nature. Hence, the charge is retained at the original protonation site, i.e., the analyte. The investigation confirms the proposed charge retention/charge depletion model. Thus, adding aprotic solvent vapors to the gas phase of an ESI source more likely yields higher charge states than using protic compounds.


Assuntos
Diaminas/análise , Diaminas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Acetonitrilas/química , Gases , Lisina/química , Metanol/química , Modelos Químicos , Prótons
3.
J Am Soc Mass Spectrom ; 27(9): 1550-63, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27245455

RESUMO

In this work, the characteristics of gas flow in inlet capillaries are examined. Such inlet capillaries are widely used as a first flow restriction stage in commercial atmospheric pressure ionization mass spectrometers. Contrary to the common assumption, we consider the gas flow in typical glass inlet capillaries with 0.5 to 0.6 mm inner diameters and lengths about 20 cm as transitional or turbulent. The measured volume flow of the choked turbulent gas stream in such capillaries is 0.8 L·min(-1) to 1.6 L·min(-1) under typical operation conditions, which is in good agreement to theoretically calculated values. Likewise, the change of the volume flow in dependence of the pressure difference along the capillary agrees well with a theoretical model for turbulent conditions as well as with exemplary measurements of the static pressure inside the capillary channel. However, the results for the volume flow of heated glass and metal inlet capillaries are neither in agreement with turbulent nor with laminar models. The velocity profile of the neutral gas in a quartz capillary with an inner diameter similar to commercial inlet capillaries was experimentally determined with spatially resolved ion transfer time measurements. The determined gas velocity profiles do not contradict the turbulent character of the flow. Finally, inducing disturbances of the gas flow by placing obstacles in the capillary channel is found to not change the flow characteristics significantly. In combination the findings suggest that laminar conditions inside inlet capillaries are not a valid primary explanation for the observed high ion transparency of inlet capillaries under common operation conditions. Graphical Abstract ᅟ.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa