Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Assunto principal
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Fish Biol ; 93(5): 952-960, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30246375

RESUMO

Early developmental stages of fishes are particularly sensitive to changes in environmental variables that affect physiological processes such as metabolism and growth. Both temperature and food availability have significant effects on the growth and survival of larval and juvenile fishes. As climate change and anthropogenic disturbances influence sensitive rearing environments of fishes it is unlikely that they will experience changes in temperature or food availability in isolation. Therefore, it is critical that we determine the effects of each of these potential stressors on larval growth and development, as well as understand the additive, synergistic or antagonistic effects of both. We reared threatened green sturgeon Acipenser medirostris (initial age ca. 32 days post hatch) at four temperatures (11, 13, 16 and 19°C) and two food availability rates (100% and 40% of optimal) to assess the effects of these stressors and their interactions on larval growth. We compared the overall size (fork length, total length and mass), growth rates (cm day-1 and g day-1 ) and relative condition factor of these larval and juvenile fish at 3 week intervals for up to 12 weeks. Our results indicated that temperature and food availability both had significant effects on growth and condition and that there was a significant interaction between the two. Fish reared with limited food availability exhibited similar patterns in growth rates to those reared with elevated food rates, but the effects of temperature were greatly attenuated when fish were food-limited. Also, the effects of temperature on condition were reversed when fish were reared with restricted food, such that fish reared at 19°C exhibited the highest relative condition when fed optimally, but the lowest relative condition when food was limited. These data are critical for the development of relevant bioenergetics models, which are needed to link the survival of larval sturgeons with historic environmental regimes, pinpoint temperature ranges for optimal survival and help target future restoration sites that will be important for the recovery of sturgeon populations.


Assuntos
Peixes/fisiologia , Animais , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Espécies em Perigo de Extinção , Peixes/anatomia & histologia , Peixes/crescimento & desenvolvimento , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Estresse Fisiológico , Temperatura
2.
Conserv Physiol ; 12(1): coae021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784525

RESUMO

Green sturgeon (Acipenser medirostris) are an anadromous threatened species of sturgeon found along the Pacific coast of North America. The southern distinct population segment only spawns in the Sacramento River and is exposed to water temperatures kept artificially cold for the conservation and management of winter-run Chinook salmon (Oncorhynchus tshawytscha). Past research has demonstrated costs of cold-water rearing including reduced growth rates, condition and survivorship of juvenile green sturgeon. Our research investigates how the stressors of water temperature and food limitation influence the metabolic performance of green sturgeon. We reared green sturgeon at two acclimation temperatures (13 and 19°C) and two ration amounts (100% and 40% of optimal feed). We then measured the routine and maximum metabolic rates (RMR and MMR, respectively) of sturgeon acclimated to these rearing conditions across a range of acute temperature exposures (11 to 31°C). Among both temperature acclimation treatments (13 or 19°C), we found that feed restriction reduced RMR across a range of acute temperatures. The influence of feed restriction on RMR and MMR interacted with acclimation temperature. Fish reared at 13°C preserved their MMR and aerobic scope (AS) despite feed restriction, while fish fed reduced rations and acclimated to 19°C showed reduced MMR and AS capacity primarily at temperatures below 16°C. The sympatry of threatened green sturgeon with endangered salmonids produces a conservation conflict, such that cold-water releases for the conservation of at-risk salmonids may constrain the metabolic performance of juvenile green sturgeon. Understanding the impacts of environmental conditions (e.g. temperature, dissolved oxygen) on ecological interactions of green sturgeon will be necessary to determine the influence of salmonid-focused management.

3.
Conserv Physiol ; 7(1): coz035, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281658

RESUMO

Reversing global declines in the abundance and diversity of fishes is dependent on science-based conservation solutions. A wealth of data exist on the ecophysiological constraints of many fishes, but much of this information is underutilized in recovery plans due to a lack of synthesis. Here, we used the imperiled green sturgeon (Acipenser medirostris) as an example of how a quantitative synthesis of physiological data can inform conservation plans, identify knowledge gaps and direct future research actions. We reviewed and extracted metadata from peer-reviewed papers on green sturgeon. A total of 105 publications were identified, spanning multiple disciplines, with the primary focus being conservation physiology (23.8%). A meta-analytical approach was chosen to summarize the mean effects of prominent stressors (elevated temperatures, salinity, low food availability and contaminants) on several physiological traits (growth, thermal tolerance, swimming performance and heat shock protein expression). All examined stressors significantly impaired green sturgeon growth, and additional stressor-specific costs were documented. These findings were then used to suggest several management actions, such as mitigating salt intrusion in nursery habitats and maintaining water temperatures within optimal ranges during peak spawning periods. Key data gaps were also identified; research efforts have been biased towards juvenile (38.1%) and adult (35.2%) life-history stages, and less data are available for early life-history stages (embryonic, 11.4%; yolk-sac larvae, 12.4%; and post yolk-sac larvae, 16.2%). Similarly, most data were collected from single-stressor studies (91.4%) and there is an urgent need to understand interactions among stressors as anthropogenic change is multi-variate and dynamic. Collectively, these findings provide an example of how meta-analytic reviews are a powerful tool to inform management actions, with the end goal of maximizing conservation gains from research efforts.

4.
Conserv Physiol ; 6(1): coy038, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018763

RESUMO

California's coastal ecosystems are forecasted to undergo shifting ocean conditions due to climate change, some of which may negatively impact recreational and commercial fish populations. To understand if fish populations have the capacity to respond to multiple stressors, it is critical to examine interactive effects across multiple biological scales, from cellular metabolism to species interactions. This study examined the effects of CO2-acidification and hypoxia on two naturally co-occurring species, juvenile rockfish (genus Sebastes) and a known predator, cabezon (Scorpaenichthys marmoratus). Fishes were exposed to two PCO2 levels at two dissolved oxygen (DO) levels: ~600 (ambient) and ~1600 (high) µatm PCO2 and 8.0 (normoxic) and 4.5 mg l-1 DO (hypoxic) and assessments of cellular metabolism, prey behavior and predation mortality rates were quantified after 1 and 3 weeks. Physiologically, rockfish showed acute alterations in cellular metabolic enzyme activity after 1 week of acclimation to elevated PCO2 and hypoxia that were not evident in cabezon. Alterations in rockfish energy metabolism were driven by increases in anaerobic LDH activity, and adjustments in enzyme activity ratios of cytochrome c oxidase and citrate synthase and LDH:CS. Correlated changes in rockfish behavior were also apparent after 1 week of acclimation to elevated PCO2 and hypoxia. Exploration behavior increased in rockfish exposed to elevated PCO2 and spatial analysis of activity indicated short-term interference with anti-predator responses. Predation rate after 1 week increased with elevated PCO2; however, no mortality was observed under the multiple-stressor treatment suggesting negative effects on cabezon predators. Most noteworthy, metabolic and behavioral changes were moderately compensated after 3 weeks of acclimation, and predation mortality rates also decreased suggesting that these rockfish may be resilient to changes in environmental stressors predicted by climate models. Linking physiological and behavioral responses to multiple stressors is vital to understand impacts on populations and community dynamics.

5.
Conserv Physiol ; 5(1): cow067, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28078086

RESUMO

Understanding how the current warming trends affect fish populations is crucial for effective conservation and management. To help define suitable thermal habitat for juvenile Chinook salmon, the thermal performance of juvenile Chinook salmon acclimated to either 15 or 19°C was tested across a range of environmentally relevant acute temperature changes (from 12 to 26°C). Swim tunnel respirometers were used to measure routine oxygen uptake as a measure of routine metabolic rate (RMR) and oxygen uptake when swimming maximally as a measure of maximal metabolic rate (MMR) at each test temperature. We estimated absolute aerobic scope (AAS = MMR - RMR), the capacity to supply oxygen beyond routine needs, as well as factorial aerobic scope (FAS = MMR/RMR). All fish swam at a test temperature of 23°C regardless of acclimation temperature, but some mortality occurred at 25°C during MMR measurements. Overall, RMR and MMR increased with acute warming, but aerobic capacity was unaffected by test temperatures up to 23°C in both acclimation groups. The mean AAS for fish acclimated and tested at 15°C (7.06 ± 1.76 mg O2 kg-1 h-1) was similar to that measured for fish acclimated and tested at 19°C (8.80 ± 1.42 mg O2 kg-1 h-1). Over the entire acute test temperature range, while MMR and AAS were similar for the two acclimation groups, RMR was significantly lower and FAS consequently higher at the lower test temperatures for the fish acclimated at 19°C. Thus, this stock of juvenile Chinook salmon shows an impressive aerobic capacity when acutely warmed to temperatures close to their upper thermal tolerance limit, regardless of the acclimation temperature. These results are compared with those for other salmonids, and the implications of our findings for informing management actions are discussed.

6.
Conserv Physiol ; 3(1): cov040, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27293725

RESUMO

Diversion (i.e. extraction) of water from rivers and estuaries can potentially affect native wildlife populations if operation is not carefully managed. For example, open, unmodified water diversions can act as a source of injury or mortality to resident or migratory fishes from entrainment and impingement, and can cause habitat degradation and fragmentation. Fish-protection devices, such as exclusion screens, louvres or sensory deterrents, can physically or behaviourally deter fish from approaching or being entrained into water diversions. However, empirical assessment of their efficacy is often lacking or is investigated only for particular economically or culturally important fishes, such as salmonids. The Southern population of anadromous green sturgeon (Acipenser medirostris) is listed as threatened in California, and there is a high density of water diversions located within their native range (the Sacramento-San Joaquin watershed). Coupled with their unique physiology and behaviour compared with many other fishes native to California, the green sturgeon is susceptible to entrainment into diversions and is an ideal species with which to study the efficacy of mitigation techniques. Therefore, we investigated juvenile green sturgeon (188-202 days post-hatch) in the presence of several fish-protection devices to assess behaviour and entrainment risk. Using a large experimental flume (∼500 kl), we found that compared with an open diversion pipe (control), the addition of a trash-rack box, louvre box, or perforated cylinder on the pipe inlet all significantly reduced the proportion of fish that were entrained through the pipe (P = 0.03, P = 0.028, and P = 0.028, respectively). Likewise, these devices decreased entrainment risk during a single movement past the pipe by between 60 and 96%. These fish-protection devices should decrease the risk of fish entrainment during water-diversion activities.

7.
Conserv Physiol ; 2(1): cou031, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27293652

RESUMO

Little is known of the swimming capacities of larval sturgeons, despite global population declines in many species due in part to fragmentation of their spawning and rearing habitats by man-made water-diversion structures. Larval green (Acipenser medirostris) and white sturgeon (Acipenser transmontanus) inhabit the highly altered Sacramento-San Joaquin watershed, making them logical species to examine vulnerability to entrainment by altered water flows. The risk of larval sturgeon entrainment is influenced by the ontogeny of swimming capacity and dispersal timing and their interactions with water-diversion structure operations. Therefore, the aim of this study was to describe and compare the ontogeny and allometry of larval green and white sturgeon swimming capacities until completion of metamorphosis into juveniles. Despite the faster growth rates and eventual larger size of larval white sturgeon, green sturgeon critical swimming velocities remained consistently, though modestly, greater than those of white sturgeon throughout the larval life stage. Although behavioural interactions with water-diversion structures are also important considerations, regarding swimming capacity, Sacramento-San Joaquin sturgeons are most vulnerable to entrainment in February-May, when white sturgeon early larvae are in the middle Sacramento River, and April-May, when green sturgeon early larvae are in the upper river. Green sturgeon migrating downstream to the estuary and bays in October-November are also susceptible to entrainment due to their movements combined with seasonal declines in their swimming capacity. An additional inter-species comparison of the allometric relationship between critical swimming velocities and total length with several sturgeon species found throughout the world suggests a similar ontogeny of swimming capacity with growth. Therefore, although dispersal and behaviour differ among river systems and sturgeon species, similar recommendations are applicable for managers seeking to balance water demands with restoration and conservation of sturgeons worldwide.

8.
Conserv Physiol ; 2(1): cou056, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27293677

RESUMO

Water projects designed to extract fresh water for local urban, industrial and agricultural use throughout rivers and estuaries worldwide have contributed to the fragmentation and degradation of suitable habitat for native fishes. The number of water diversions located throughout the Sacramento-San Joaquin watershed in California's Central Valley exceeds 3300, and the majority of these are unscreened. Many anadromous fish species are susceptible to entrainment into these diversions, potentially impacting population numbers. In the laboratory, juvenile green sturgeon (Acipenser medirostris) have been shown to have high entrainment rates into unscreened diversions compared with those of other native California fish species, which may act as a significant source of mortality for this already-threatened species. Therefore, we tested the efficacy of a sensory deterrent (strobe light) and two structural pipe modifications (terminal pipe plate and upturned pipe configuration) in decreasing the entrainment of juvenile green sturgeon (mean mass ±â€…SEM = 162.9 ±â€…4.0 g; mean fork length = 39.4 ±â€…0.3 cm) in a large (>500 kl) outdoor flume fitted with a water-diversion pipe 0.46 m in diameter. While the presence of the strobe light did not affect fish entrainment rates, the terminal pipe plate and upturned pipe modifications significantly decreased the proportion of fish entrained out of the total number tested relative to control conditions (0.13 ±â€…0.02 and 0.03 ±â€…0.02 vs. 0.44 ±â€…0.04, respectively). These data suggest that sensory deterrents using visual stimuli are not an effective means to reduce diversion pipe interactions for green sturgeon, but that structural alterations to diversions can successfully reduce entrainment for this species. Our results are informative for the development of effective management strategies to mitigate the impacts of water diversions on sturgeon populations and suggest that effective restoration strategies that balance agricultural needs with conservation programmes are possible.

9.
PLoS One ; 9(1): e86321, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24454967

RESUMO

Over 3,300 unscreened agricultural water diversion pipes line the levees and riverbanks of the Sacramento River (California) watershed, where the threatened Southern Distinct Population Segment of green sturgeon, Acipenser medirostris, spawn. The number of sturgeon drawn into (entrained) and killed by these pipes is greatly unknown. We examined avoidance behaviors and entrainment susceptibility of juvenile green sturgeon (35±0.6 cm mean fork length) to entrainment in a large (>500-kl) outdoor flume with a 0.46-m-diameter water-diversion pipe. Fish entrainment was generally high (range: 26-61%), likely due to a lack of avoidance behavior prior to entering inescapable inflow conditions. We estimated that up to 52% of green sturgeon could be entrained after passing within 1.5 m of an active water-diversion pipe three times. These data suggest that green sturgeon are vulnerable to unscreened water-diversion pipes, and that additional research is needed to determine the potential impacts of entrainment mortality on declining sturgeon populations. Data under various hydraulic conditions also suggest that entrainment-related mortality could be decreased by extracting water at lower diversion rates over longer periods of time, balancing agricultural needs with green sturgeon conservation.


Assuntos
Peixes/fisiologia , Irrigação Agrícola , Animais , California , Espécies em Perigo de Extinção , Feminino , Masculino , Rios , Natação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa