Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 122(3): 798-810, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29240426

RESUMO

Optical electron transfer (intervalence) transitions in radical anions of p-carborane oligomers attest to delocalization of electrons between two p-carboranes cages or a p-carborane and a phenyl ring. Oligomers of the 12 vertex p-carborane (C2B10H12) cage, [12], with up to 3 cages were synthesized, as well as p-carboranes with one or two trimethylsilylphenyl groups, [6], attached to the carbon termini. Pulse radiolysis in tetrahydrofuran produced radical anions, determined redox potentials by equilibria and measured their absorption spectra. Density functional theory computations provided critical insight into the optical electron transfer bands and electron delocalization. One case, [6-12-6], showed both Robin-Day class II and III transitions. The class III transition resulted from a fully delocalized excess electron across both benzene rings and the central p-carborane, with an electronic coupling Hab = 0.46 eV between the cage and either benzene. This unprecedented finding shows that p-carborane bridges are not simply electron withdrawing insulators. In other cases with more than ∼1/2 of the excess electron localized on a [12], large cage distortions were triggered, producing a partially open cage with a nido-like structure. This resulted in class II transitions with similar Hab but massive reorganization energies. The computations also predicted delocalization in radical cations, but complexities in cation formation allowed only tentative experimental support of the predictions. The results with anions provide clear evidence for carborane conjugation that might be exploited in molecular wire materials, which are classically composed of all π-conjugated molecules.

3.
J Am Chem Soc ; 126(13): 4301-9, 2004 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-15053620

RESUMO

Carbon-halogen bond dissociation rates for a series of aryl halide radical anions (ArX-: X = Cl, Br) in NMP were measured at room temperature by pulse radiolysis with 10-11 s time resolution. To obtain accurate dissociation rates, care was taken to measure and correct for competing decay channels. The observed rates correlated well with activation energies computed in the gas phase by density functional (DFT) calculations. The rates did not correlate well with electron affinities or dissociation energies obtained by the same computational methods, although such correlations are reported in the literature and are expected on the basis of simple models. The calculations also found that the transition state structures had bent carbon-halogen bonds. Bending enables large reductions of the activation energies by an electronic effect involving mixing of phi* and sigma* states. This bending-induced mixing is computed to increase the dissociation rates by a few orders of magnitude and is thus essential to understanding these reactions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa