Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36981283

RESUMO

We introduce the Random Walk Approximation (RWA), a new method to approximate the stationary solution of master equations describing stochastic processes taking place on graphs. Our approximation can be used for all processes governed by non-linear master equations without long-range interactions and with a conserved number of entities, which are typical in biological systems, such as gene regulatory or chemical reaction networks, where no exact solution exists. For linear systems, the RWA becomes the exact result obtained from the maximum entropy principle. The RWA allows having a simple analytical, even though approximated, form of the solution, which is global and easier to deal with than the standard System Size Expansion (SSE). Here, we give some theoretically sufficient conditions for the validity of the RWA and estimate the order of error calculated by the approximation with respect to the number of particles. We compare RWA with SSE for two examples, a toy model and the more realistic dual phosphorylation cycle, governed by the same underlying process. Both approximations are compared with the exact integration of the master equation, showing for the RWA good performances of the same order or better than the SSE, even in regions where sufficient conditions are not met.

2.
Small ; 15(17): e1900323, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30941901

RESUMO

Gold nanoparticles (AuNPs) covered with mixtures of immiscible ligands present potentially anisotropic surfaces that can modulate their interactions at complex nano-bio interfaces. Mixed, self-assembled, monolayer (SAM)-protected AuNPs, prepared with incompatible hydrocarbon and fluorocarbon amphiphilic ligands, are used here to probe the molecular basis of surface phase separation and disclose the role of fluorinated ligands on the interaction with lipid model membranes and cells, by integrating in silico and experimental approaches. These results indicate that the presence of fluorinated amphiphilic ligands enhances the membrane binding ability and cellular uptake of gold nanoparticles with respect to those coated only with hydrogenated amphiphilic ligands. For mixed monolayers, computational results suggest that ligand phase separation occurs on the gold surface, and the resulting anisotropy affects the number of contacts and adhesion energies with a membrane bilayer. This reflects in a diverse membrane interaction for NPs with different surface morphologies, as determined by surface plasmon resonance, as well as differential effects on cells, as observed by flow cytometry and confocal microscopy. Overall, limited changes in monolayer features can significantly affect NP surface interfacial properties, which, in turn, affect the interaction of SAM-AuNPs with cellular membranes and subsequent effects on cells.


Assuntos
Flúor/química , Ouro/química , Hidrogênio/química , Nanopartículas Metálicas/química , Adsorção , Anisotropia , Apoptose , Linhagem Celular Tumoral , Membrana Celular/química , Simulação por Computador , Citometria de Fluxo , Humanos , Hidrocarbonetos/química , Ligantes , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Ressonância de Plasmônio de Superfície , Propriedades de Superfície , Termodinâmica
3.
Nano Lett ; 17(2): 992-1000, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28027440

RESUMO

Rechargeable sodium-ion batteries are becoming a viable alternative to lithium-based technology in energy storage strategies, due to the wide abundance of sodium raw material. In the past decade, this has generated a boom of research interest in such systems. Notwithstanding the large number of research papers concerning sodium-ion battery electrodes, the development of a low-cost, well-performing anode material remains the largest obstacle to overcome. Although the well-known anatase, one of the allotropic forms of natural TiO2, was recently proposed for such applications, the material generally suffers from reduced cyclability and limited power, due to kinetic drawbacks and to its poor charge transport properties. A systematic approach in the morphological tuning of the anatase nanocrystals is needed, to optimize its structural features toward the electrochemical properties and to promote the material interaction with the conductive network and the electrolyte. Aiming to face with these issues, we were able to obtain a fine tuning of the nanoparticle morphology and to expose the most favorable nanocrystal facets to the electrolyte and to the conductive wrapping agent (graphene), thus overcoming the intrinsic limits of anatase transport properties. The result is a TiO2-based composite electrode able to deliver an outstandingly stability over cycles (150 mA h g-1 for more than 600 cycles in the 1.5-0.1 V potential range) never achieved with such a low content of carbonaceous substrate (5%). Moreover, it has been demonstrated for the first time than these outstanding performances are not simply related to the overall surface area of the different morphologies but have to be directly related to the peculiar surface characteristics of the crystals.

4.
Bioconjug Chem ; 28(1): 43-52, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28095690

RESUMO

Low intrinsic toxicity, high solubility, and stability are important and necessary features of gold nanoparticles to be used in the biomedical field. In this context, charged nanoparticles proved to be very versatile, and among them charged mixed-monolayer gold nanoparticles, displaying monolayers with well-defined morphologies, represent a paradigm. By using mixtures of hydrogenated and fluorinated thiols, the formation of monolayer domains may be brought to an extreme because of the immiscibility of fluorinated and hydrogenated chains. Following this rationale, mixed monolayer gold nanoparticles featuring ammonium, sulfonate, or carboxylic groups on their surface were prepared by using amphiphilic hydrogenated thiols and 1H,1H,2H,2H-perfluoro-alkanethiols. The toxicity of these systems was assessed in HeLa cells and was found to be, in general, low even for the cationic nanoparticles which usually show a high cytotoxicity and is comparable to that of homoligand gold nanoparticles displaying amphiphilic-charge neutral-hydrogenated or fluorinated thiolates in their monolayer. These properties make the mixed ligand monolayer gold nanoparticles an interesting new candidate for medical application.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Compostos de Sulfidrila/química , Corantes Fluorescentes/química , Halogenação , Células HeLa , Humanos
5.
Angew Chem Int Ed Engl ; 56(23): 6589-6593, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28464431

RESUMO

Oxygen evolution reaction (OER) is the most critical step in water splitting, still limiting the development of efficient alkaline water electrolyzers. Here we investigate the OER activity of Au-Fe nanoalloys obtained by laser-ablation synthesis in solution. This method allows a high amount of iron (up to 11 at %) to be incorporated into the gold lattice, which is not possible in Au-Fe alloys synthesized by other routes, due to thermodynamic constraints. The Au0.89 Fe0.11 nanoalloys exhibit strongly enhanced OER in comparison to the individual pure metal nanoparticles, lowering the onset of OER and increasing up to 20 times the current density in alkaline aqueous solutions. Such a remarkable electrocatalytic activity is associated to nanoalloying, as demonstrated by comparative examples with physical mixtures of gold and iron nanoparticles. These results open attractive scenarios to the use of kinetically stable nanoalloys for catalysis and energy conversion.

6.
Faraday Discuss ; 191: 527-543, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27459891

RESUMO

The use of binary blends of hydrogenated and fluorinated alkanethiolates represents an interesting approach to the construction of anisotropic hybrid organic-inorganic nanoparticles since the fluorinated and hydrogenated components are expected to self-sort on the nanoparticle surface because of their reciprocal phobicity. These mixed monolayers are therefore strongly non-ideal binary systems. The synthetic routes we explored to achieve mixed monolayer gold nanoparticles displaying hydrogenated and fluorinated ligands clearly show that the final monolayer composition is a non-linear function of the initial reaction mixture. Our data suggest that, under certain geometrical constraints, nucleation and growth of fluorinated domains could be the initial event in the formation of these mixed monolayers. The onset of domain formation depends on the structure of the fluorinated and hydrogenated species. The solubility of the mixed monolayer nanoparticles displayed a marked discontinuity as a function of the monolayer composition. When the fluorinated component content is small, the nanoparticle systems are fully soluble in chloroform, at intermediate content the nanoparticles become soluble in hexane and eventually they become soluble in fluorinated solvents only. The ranges of monolayer compositions in which the solubility transitions are observed depend on the nature of the thiols composing the monolayer.

7.
Sci Rep ; 14(1): 7403, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548805

RESUMO

Quantitative computed tomography (QCT)-based in silico models have demonstrated improved accuracy in predicting hip fractures with respect to the current gold standard, the areal bone mineral density. These models require that the femur bone is segmented as a first step. This task can be challenging, and in fact, it is often almost fully manual, which is time-consuming, operator-dependent, and hard to reproduce. This work proposes a semi-automated procedure for femur bone segmentation from CT images. The proposed procedure is based on the bone and joint enhancement filter and graph-cut algorithms. The semi-automated procedure performances were assessed on 10 subjects through comparison with the standard manual segmentation. Metrics based on the femur geometries and the risk of fracture assessed in silico resulting from the two segmentation procedures were considered. The average Hausdorff distance (0.03 ± 0.01 mm) and the difference union ratio (0.06 ± 0.02) metrics computed between the manual and semi-automated segmentations were significantly higher than those computed within the manual segmentations (0.01 ± 0.01 mm and 0.03 ± 0.02). Besides, a blind qualitative evaluation revealed that the semi-automated procedure was significantly superior (p < 0.001) to the manual one in terms of fidelity to the CT. As for the hip fracture risk assessed in silico starting from both segmentations, no significant difference emerged between the two (R2 = 0.99). The proposed semi-automated segmentation procedure overcomes the manual one, shortening the segmentation time and providing a better segmentation. The method could be employed within CT-based in silico methodologies and to segment large volumes of images to train and test fully automated and supervised segmentation methods.


Assuntos
Fêmur , Fraturas do Quadril , Humanos , Fêmur/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Extremidade Inferior , Fraturas do Quadril/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
9.
Phys Chem Chem Phys ; 14(17): 5945-52, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22446993

RESUMO

The present study reports on the synthesis and the electrochemical behavior of Na(0.71)CoO(2), a promising candidate as cathode for Na-based batteries. The material was obtained in two different morphologies by a double-step route, which is cheap and easy to scale up: the hydrothermal synthesis to produce Co(3)O(4) with tailored and nanometric morphology, followed by the solid-state reaction with NaOH, or alternatively with Na(2)CO(3), to promote Na intercalation. Both products are highly crystalline and have the P2-Na(0.71)CoO(2) crystal phase, but differ in the respective morphologies. The material obtained from Na(2)CO(3) have a narrow particle length (edge to edge) distribution and 2D platelet morphology, while those from NaOH exhibit large microcrystals, irregular in shape, with broad particle length distribution and undefined exposed surfaces. Electrochemical analysis shows the good performances of these materials as a positive electrode for Na-ion half cells. In particular, Na(0.71)CoO(2) thin microplatelets exhibit the best behavior with stable discharge specific capacities of 120 and 80 mAh g(-1) at 5 and 40 mA g(-1), respectively, in the range 2.0-3.9 V vs. Na(+)/Na. These outstanding properties make this material a promising candidate to construct viable and high-performance Na-based batteries.

10.
Nanomaterials (Basel) ; 12(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055282

RESUMO

An optimization work on dye-sensitized solar cells (DSSCs) based on both artificial and natural dyes was carried out by a fine synthesis work embedding gold nanoparticles in a TiO2 semiconductor and perfecting the TiO2 particle sizes of the scattering layer. Noble metal nanostructures are known for the surface plasmon resonance peculiarity that reveals unique properties and has been implemented in several fields such as sensing, photocatalysis, optical antennas and PV devices. By embedding gold nanoparticles in the mesoporous TiO2 layer and adding a scattering layer, we were able to boost the power conversion efficiency (PCE) to 10.8%, using an organic ruthenium complex. The same implementation was carried out using a natural dye, betalains, extracted from Sicilian prickly pear. In this case, the conversion efficiency doubled from 1 to 2% (measured at 1 SUN illumination, 100 mW/cm2 under solar simulation irradiation). Moreover, we obtained (measured at 0.1 SUN, 10 mW/cm2 under blue light LED irradiation) a record efficiency of 15% with the betalain-based dye, paving the way for indoor applications in organic natural devices. Finally, an attempt to scale up the system is shown, and a betalain-based- dye-sensitized solar module (DSSM), with an active area of 43.2 cm2 and a PCE of 1.02%, was fabricated for the first time.

11.
J Am Chem Soc ; 133(44): 17652-61, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21970524

RESUMO

The promising properties of anatase TiO(2) nanocrystals exposing specific surfaces have been investigated in depth both theoretically and experimentally. However, a clear assessment of the role of the crystal faces in photocatalytic processes is still under debate. In order to clarify this issue, we have comprehensively explored the properties of the photogenerated defects and in particular their dependence on the exposed crystal faces in shape-controlled anatase. Nanocrystals were synthesized by solvothermal reaction of titanium butoxide in the presence of oleic acid and oleylamine as morphology-directing agents, and their photocatalytic performances were evaluated in the phenol mineralization in aqueous media, using O(2) as the oxidizing agent. The charge-trapping centers, Ti(3+), O(-), and O(2)(-), formed by UV irradiation of the catalyst were detected by electron spin resonance, and their abundance and reactivity were related to the exposed crystal faces and to the photoefficiency of the nanocrystals. In vacuum conditions, the concentration of trapped holes (O(-) centers) increases with increasing {001} surface area and photoactivity, while the amount of Ti(3+) centers increases with the specific surface area of {101} facets, and the highest value occurs for the sample with the worst photooxidative efficacy. These results suggest that {001} surfaces can be considered essentially as oxidation sites with a key role in the photoxidation, while {101} surfaces provide reductive sites which do not directly assist the oxidative processes. Photoexcitation experiments in O(2) atmosphere led to the formation of Ti(4+)-O(2)(-) oxidant species mainly located on {101} faces, confirming the indirect contribution of these surfaces to the photooxidative processes. Although this work focuses on the properties of TiO(2), we expect that the presented quantitative investigation may provide a new methodological tool for a more effective evaluation of the role of metal oxide crystal faces in photocatalytic processes.


Assuntos
Nanopartículas/química , Titânio/química , Catálise , Oxidantes/química , Oxigênio/química , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície , Raios Ultravioleta
12.
J Am Chem Soc ; 133(14): 5296-304, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21425840

RESUMO

Macroporous WO(3) films with inverted opal structure were synthesized by one-step procedure, which involves the self-assembly of the spherical templating agents and the simultaneous sol-gel condensation of the semiconductor alkoxide precursor. Transition metal doping, aimed to enhance the WO(3) electrical response, was carried out by including Cr(III) and Pt(IV) centers in the oxide matrix. It turned out that Cr remains as homogeneously dispersed Cr(III) centers inside the WO(3) host, while Pt undergoes reduction and aggregation to form nanoclusters located at the oxide surface. Upon interaction with NH(3), the electrical conductivity of transition metal doped-WO(3) increases, especially in the presence of Pt dopant, resulting in outstanding sensing properties (S = 110 ± 15 at T = 225 °C and [NH(3)] = 74 ppm). A mechanism was suggested to explain the excellent electrical response of Pt-doped films with respect to the Cr-doped ones. This associates the easy chemisorption of ammonia on the WO(3) nanocrystals, promoted by the inverted opal structure, with the catalytic action exerted by the surface Pt nanoclusters on the N-H bond dissociation. The overall results indicate that in Pt-doped WO(3) films the effects of the macroporosity positively combine with the electrical sensitization promoted by the metal nanoclusters, thus providing very lightweight materials which display high functionality even at relatively low temperatures. We expect that this synergistic effect can be exploited to realize other functional hierarchical metal oxide structures to be used as gas sensors or catalysts.

13.
Phys Rev E ; 104(5): L052101, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942825

RESUMO

We study the avalanche statistics observed in a minimal random growth model. The growth is governed by a reproduction rate obeying a probability distribution with finite mean a[over ¯] and variance v_{a}. These two control parameters determine if the avalanche size tends to a stationary distribution (finite scale statistics with finite mean and variance, or power-law tailed statistics with exponent ∈(1,3]), or instead to a nonstationary regime with log-normal statistics. Numerical results and their statistical analysis are presented for a uniformly distributed growth rate, which are corroborated and generalized by mathematical results. The latter show that the numerically observed avalanche regimes exist for a wide family of growth rate distributions, and they provide a precise definition of the boundaries between the three regimes.

14.
Angew Chem Int Ed Engl ; 48(17): 3060-4, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19180612

RESUMO

Beyond stripes: The extreme lipophobicity of perfluorinated chains attached to amphiphilic thiolates triggers the formation of "stars" (or patches) surrounded by amphiphilic alkylthiolates in three-dimensional self-assembled monolayers. This strategy led to the first example of a water-soluble multicompartment monolayer wrapped around a gold core.

15.
Nanoscale Adv ; 1(7): 2681-2689, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-36132716

RESUMO

Plasmonic nanostructures are intensively studied for their ability to create electromagnetic hot spots, where a great variety of optical and spectroscopic processes can be amplified. Understanding how to control the formation of hot spots in a dynamic and reversible way is crucial to further expand the panorama of plasmon enhanced phenomena. In this work, we investigate the ability to modulate the hot spots in magnetic-plasmonic iron-doped silver nanoparticles dispersed in aqueous solution, by applying an external magnetic field. Evidence of magnetic field induction of hot spots was achieved by measuring the amplification of surface enhanced Raman scattering (SERS) from analytes dispersed in the solution containing Ag-Fe NPs. A polymeric shell was introduced around Ag-Fe NPs to confer colloidal stability, and it was found that the length and density of the polymer chains have a significant influence on SERS performance, and therefore on the formation of electromagnetic hot spots, under the action of the external magnetic field. These findings are expected to provide an important contribution to understanding the growing field of tuneable electromagnetic enhancement by external stimuli, such as magnetic fields applied to magnetic-plasmonic nanoparticles.

16.
J Am Chem Soc ; 130(47): 15744-5, 2008 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-18975902

RESUMO

2-nm gold nanoclusters coated with Zn(II) complexes bearing auxiliary hydrogen bond donors act as multivalent catalysts capable of promoting the hydrolysis of model phosphate diesters with exceptional activity and inducing DNA double strand cleavage.


Assuntos
DNA/química , Ésteres/química , Nanopartículas/química , Fosfatos/química , Catálise , Hidrólise , Ligantes , Estrutura Molecular , Plasmídeos/química
17.
J Phys Chem B ; 110(14): 7232-7, 2006 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-16599492

RESUMO

Free and functionalized gold nanoparticles are synthesized by laser ablation of a gold metal plate immersed in dimethyl sulfoxide, acetonitrile, and tetrahydrofuran. Functionalized gold nanoparticles are synthesized in a one-step process thanks to the solubility of the ligands in these solvents. It is possible to have significant control of the concentration, aggregation, and size of the particles by varying a few parameters. UV-vis spectroscopy and transmission electron microscopy are used for the characterization of the nanoparticles. The Mie model for spherical particles and the Gans model for spheroids allow a fast and reliable interpretation of experimental UV-vis spectra.

18.
ACS Nano ; 10(10): 9316-9325, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27662338

RESUMO

The spontaneous self-organization of dissimilar ligands on the surface of metal nanoparticles is a very appealing approach to obtain anisotropic "spherical" systems. In addition to differences in ligand length and end groups, a further thermodynamic driving force to control the self-assembled monolayer organization may become available if the ligands are inherently immiscible, as is the case of hydrogenated (H-) and fluorinated (F-) species. Here, we validate the viability of this approach by combining 19F NMR experiments and multiscale molecular simulations on large sets of mixed-monolayer-protected gold nanoparticles (NPs). The phase segregation of blends of F- and H-thiolates grafted on the surface of gold NPs allows a straightforward approach to patterned mixed monolayers, with the shapes of the monolayer domains being encoded in the structure of the F/H-thiolate ligands. The results obtained from this comprehensive study offer molecular design rules to achieve a precise control of inorganic nanoparticles protected by specifically patterned monolayers.

19.
J Phys Chem B ; 109(49): 23125-8, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16375271

RESUMO

Gold nanoparticles are synthesized by laser ablation of a gold plate in toluene. The nanoparticles do not show their characteristic surface plasmon absorption (SPA) and are found to be included in a graphitic matrix. The absence of this absorption is found to derive from the presence of the matrix which prevents the growth of large nanoparticles and covers them, suppressing the SPA according to the Mie model for core@shell particles. It is possible to recover the nanoparticle SPA by oxidizing the carbon matrix, obtaining, therefore, some control on the activity of this absorption.

20.
J Nanosci Nanotechnol ; 5(2): 259-65, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15853145

RESUMO

Radio frequency sputtering of gold on amorphous silica substrates was used for the preparation of Au nanoparticles on SiO2. Deposition experiments were carried out in Ar plasmas under mild conditions (RF power = 5/10 W, total pressure = 0.38 mbar, substrate temperature < or = 210 degrees C), focusing in particular on the effect of sputtering time (5/30 min) and substrate temperature on gold nucleation and coalescence, with the aim of obtaining SiO2-supported Au nanoparticles characterized by precise structural and morphological features. To this aim, several analytical techniques were employed for a thorough characterization of the systems properties, including glancing incidence X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, atomic force microscopy, and UV-Vis absorption spectroscopy. In particular, the evolution of optical spectra, i.e., of the surface plasmon resonance peak, was used as a probe for the structural features and was related to the results obtained by other characterization techniques. Gold nanoclusters (phi approximately 4/10 nm) dispersed uniformly on silica matrices were obtained under soft conditions, with morphology ranging from island to cluster like. The obtained results make possible a careful modulation of substrate coverage and gold nanoparticle size.


Assuntos
Ouro/química , Nanoestruturas/química , Nanotecnologia/métodos , Dióxido de Silício/química , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa