Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(19): e202401107, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38358802

RESUMO

The first total synthesis of dragocins A-C, remarkable natural products containing an unusual C4' oxidized ribose architecture bridged by a polyhydroxylated pyrrolidine, is presented through a route featuring a number of uncommon maneuvers. Several generations towards the target molecules are presented, including the spectacular failure of a key C-H oxidation on a late-stage intermediate. The final route features rapid, stereocontrolled access to a densely functionalized pyrrolidine and an unprecedented diastereoselective oxidative electrochemical cyclization to forge the hallmark 9-membered ring. Preliminary studies suggest this electrochemical oxidation protocol is generally useful.

2.
Chem Sci ; 12(5): 1736-1744, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34163933

RESUMO

Dehydrohalogenation, or elimination of hydrogen-halide equivalents, remains one of the simplest methods for the installation of the biologically-important olefin functionality. However, this transformation often requires harsh, strongly-basic conditions, rare noble metals, or both, limiting its applicability in the synthesis of complex molecules. Nature has pursued a complementary approach in the novel vitamin B12-dependent photoreceptor CarH, where photolysis of a cobalt-carbon bond leads to selective olefin formation under mild, physiologically-relevant conditions. Herein we report a light-driven B12-based catalytic system that leverages this reactivity to convert alkyl electrophiles to olefins under incredibly mild conditions using only earth abundant elements. Further, this process exhibits a high level of regioselectivity, producing terminal olefins in moderate to excellent yield and exceptional selectivity. Finally, we are able to access a hitherto-unknown transformation, remote elimination, using two cobalt catalysts in tandem to produce subterminal olefins with excellent regioselectivity. Together, we show vitamin B12 to be a powerful platform for developing mild olefin-forming reactions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa