Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 548(7669): 607-611, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28767641

RESUMO

ATP-dependent chromatin remodellers regulate access to genetic information by controlling nucleosome positions in vivo. However, the mechanism by which remodellers discriminate between different nucleosome substrates is poorly understood. Many chromatin remodelling proteins possess conserved protein domains that interact with nucleosomal features. Here we used a quantitative high-throughput approach, based on the use of a DNA-barcoded mononucleosome library, to profile the biochemical activity of human ISWI family remodellers in response to a diverse set of nucleosome modifications. We show that accessory (non-ATPase) subunits of ISWI remodellers can distinguish between differentially modified nucleosomes, directing remodelling activity towards specific nucleosome substrates according to their modification state. Unexpectedly, we show that the nucleosome acidic patch is necessary for maximum activity of all ISWI remodellers evaluated. This dependence also extends to CHD and SWI/SNF family remodellers, suggesting that the acidic patch may be generally required for chromatin remodelling. Critically, remodelling activity can be regulated by modifications neighbouring the acidic patch, signifying that it may act as a tunable interaction hotspot for ATP-dependent chromatin remodellers and, by extension, many other chromatin effectors that engage this region of the nucleosome surface.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Nucleossomos/química , Nucleossomos/metabolismo , Especificidade por Substrato , Fatores de Transcrição/metabolismo , Código de Barras de DNA Taxonômico , Histonas/metabolismo , Humanos , Modelos Moleculares , Nucleossomos/genética , Subunidades Proteicas/metabolismo
2.
Mol Cell Proteomics ; 20: 100108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34129938

RESUMO

Advances in several key technologies, including MHC peptidomics, have helped fuel our understanding of basic immune regulatory mechanisms and the identification of T cell receptor targets for the development of immunotherapeutics. Isolating and accurately quantifying MHC-bound peptides from cells and tissues enables characterization of dynamic changes in the ligandome due to cellular perturbations. However, the current multistep analytical process is challenging, and improvements in throughput and reproducibility would enable rapid characterization of multiple conditions in parallel. Here, we describe a robust and quantitative method whereby peptides derived from MHC-I complexes from a variety of cell lines, including challenging adherent lines such as MC38, can be enriched in a semiautomated fashion on reusable, dry-storage, customized antibody cartridges. Using this method, a researcher, with very little hands-on time and in a single day, can perform up to 96 simultaneous enrichments at a similar level of quality as a manual workflow. TOMAHAQ (Triggered by Offset, Multiplexed, Accurate-mass, High-resolution, and Absolute Quantification), a targeted mass spectrometry technique that combines sample multiplexing and high sensitivity, was employed to characterize neoepitopes displayed on MHC-I by tumor cells and to quantitatively assess the influence of neoantigen expression and induced degradation on neoepitope presentation. This unique combination of robust semiautomated MHC-I peptide isolation and high-throughput multiplexed targeted quantitation allows for both the routine analysis of >4000 unique MHC-I peptides from 250 million cells using nontargeted methods, as well as quantitative sensitivity down to the low amol/µl level using TOMAHAQ targeted MS.


Assuntos
Epitopos , Antígenos de Histocompatibilidade Classe I/química , Proteômica/métodos , Animais , Linhagem Celular Tumoral , Escherichia coli/genética , Antígenos de Histocompatibilidade Classe I/genética , Espectrometria de Massas/métodos , Camundongos , Proteínas Recombinantes , Fluxo de Trabalho
3.
Proc Natl Acad Sci U S A ; 115(11): 2836-2841, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29476010

RESUMO

Human cells express thousands of different surface proteins that can be used for cell classification, or to distinguish healthy and disease conditions. A method capable of profiling a substantial fraction of the surface proteome simultaneously and inexpensively would enable more accurate and complete classification of cell states. We present a highly multiplexed and quantitative surface proteomic method using genetically barcoded antibodies called phage-antibody next-generation sequencing (PhaNGS). Using 144 preselected antibodies displayed on filamentous phage (Fab-phage) against 44 receptor targets, we assess changes in B cell surface proteins after the development of drug resistance in a patient with acute lymphoblastic leukemia (ALL) and in adaptation to oncogene expression in a Myc-inducible Burkitt lymphoma model. We further show PhaNGS can be applied at the single-cell level. Our results reveal that a common set of proteins including FLT3, NCR3LG1, and ROR1 dominate the response to similar oncogenic perturbations in B cells. Linking high-affinity, selective, genetically encoded binders to NGS enables direct and highly multiplexed protein detection, comparable to RNA-sequencing for mRNA. PhaNGS has the potential to profile a substantial fraction of the surface proteome simultaneously and inexpensively to enable more accurate and complete classification of cell states.


Assuntos
Anticorpos/análise , Linfoma de Burkitt/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leucemia/genética , Proteínas de Membrana/genética , Proteômica/métodos , Anticorpos/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Linfoma de Burkitt/metabolismo , Linhagem Celular Tumoral , Humanos , Leucemia/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo
4.
J Am Chem Soc ; 138(40): 13123-13126, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27626304

RESUMO

Identifying the protein targets of bioactive small molecules remains a major problem in the discovery of new chemical probes and therapeutics. While activity-based probes and photo-cross-linkers have had success in identifying protein targets of small molecules, each technique has limitations. Here we describe a method for direct proximity tagging of proteins that bind small molecules. We engineered a promiscuous ligase based on the NEDD8 conjugating enzyme, Ubc12, which can be covalently linked to a small molecule of interest. When target proteins bind the small molecule, they are directly labeled on surface lysines with a biotinylated derivative of the small ubiquitin homologue, NEDD8. This unique covalent tag can then be used to identify the small molecule binding proteins. Utilizing the drug dasatinib, we have shown that dasatinib-directed NEDDylation occurs for known endogenous protein binders in complex cell lysates. In addition, we have been able to improve NEDDylation efficiency through rational mutagenesis. Finally, we have shown that affinity-directed NEDDylation can be applied to two other protein-ligand interactions beyond kinases. Proximity tagging using this engineered ligase requires direct binding of the target and, thus, provides a useful and orthogonal approach to facilitate small molecule target identification.

5.
Proc Natl Acad Sci U S A ; 110(37): 14894-9, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980157

RESUMO

Histone posttranslational modification leads to downstream effects indirectly by allowing or preventing docking of effector molecules, or directly by changing the intrinsic biophysical properties of local chromatin. To date, little has been done to study posttranslational modifications that lie outside of the unstructured tail domains of histones. Core residues, and in particular arginines in H3 and H4, mediate key interactions between the histone octamer and DNA in forming the nucleosomal particle. Using mass spectrometry, we find that one of these core residues, arginine 42 of histone H3 (H3R42), is dimethylated in mammalian cells by the methyltransferases coactivator arginine methyltransferase 1 (CARM1) and protein arginine methyltransferase 6 (PRMT6) in vitro and in vivo, and we demonstrate that methylation of H3R42 stimulates transcription in vitro from chromatinized templates. Thus, H3R42 is a new, "nontail" histone methylation site with positive effects on transcription. We propose that methylation of basic histone residues at the DNA interface may disrupt histone:DNA interactions, with effects on downstream processes, notably transcription.


Assuntos
Histonas/química , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Sequência de Aminoácidos , Animais , Arginina/química , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Metilação , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Transcrição Gênica
6.
J Exp Med ; 217(4)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31940002

RESUMO

Tumor-specific mutations can generate neoantigens that drive CD8 T cell responses against cancer. Next-generation sequencing and computational methods have been successfully applied to identify mutations and predict neoantigens. However, only a small fraction of predicted neoantigens are immunogenic. Currently, predicted peptide binding affinity for MHC-I is often the major criterion for prioritizing neoantigens, although little progress has been made toward understanding the precise functional relationship between affinity and immunogenicity. We therefore systematically assessed the immunogenicity of peptides containing single amino acid mutations in mouse tumor models and divided them into two classes of immunogenic mutations. The first comprises mutations at a nonanchor residue, for which we find that the predicted absolute binding affinity is predictive of immunogenicity. The second involves mutations at an anchor residue; here, predicted relative affinity (compared with the WT counterpart) is a better predictor. Incorporating these features into an immunogenicity model significantly improves neoantigen ranking. Importantly, these properties of neoantigens are also predictive in human datasets, suggesting that they can be used to prioritize neoantigens for individualized neoantigen-specific immunotherapies.


Assuntos
Antígenos de Neoplasias/imunologia , Mutação , Neoplasias/genética , Neoplasias/imunologia , Aminoácidos/genética , Animais , Afinidade de Anticorpos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Antígenos de Histocompatibilidade Classe I/imunologia , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Peptídeos/genética , Peptídeos/imunologia , RNA-Seq , Sequenciamento do Exoma
7.
J Med Chem ; 59(4): 1580-98, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26699912

RESUMO

Development of tool molecules that inhibit Jumonji demethylases allows for the investigation of cancer-associated transcription. While scaffolds such as 2,4-pyridinedicarboxylic acid (2,4-PDCA) are potent inhibitors, they exhibit limited selectivity. To discover new inhibitors for the KDM4 demethylases, enzymes overexpressed in several cancers, we docked a library of 600,000 fragments into the high-resolution structure of KDM4A. Among the most interesting chemotypes were the 5-aminosalicylates, which docked in two distinct but overlapping orientations. Docking poses informed the design of covalently linked fragment compounds, which were further derivatized. This combined approach improved affinity by ∼ 3 log-orders to yield compound 35 (Ki = 43 nM). Several hybrid inhibitors were selective for KDM4C over the related enzymes FIH, KDM2A, and KDM6B while lacking selectivity against the KDM3 and KDM5 subfamilies. Cocrystal structures corroborated the docking predictions. This study extends the use of structure-based docking from fragment discovery to fragment linking optimization, yielding novel KDM4 inhibitors.


Assuntos
Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Mesalamina/química , Mesalamina/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia
8.
Chem Commun (Camb) ; 47(8): 2342-4, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21173985

RESUMO

The low reactivity of peptide-prolyl-thioesters in native chemical ligation is not due to steric effects at the ß-carbon, but rather to the presence of a carbonyl moiety on the nitrogen atom of the proline.


Assuntos
Peptídeos/química , Prolina/química , Sequência de Aminoácidos , Ligação de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa