Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nematol ; 55(1): 20230032, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37533964

RESUMO

Most commercial flue-cured tobacco cultivars contain the Rk1 resistance gene, which provides resistance to races 1 and 3 of Meloidogyne incognita and race 1 of M. arenaria. A number of cultivars now possess a second root-knot resistance gene, Rk2. High soil temperatures have been associated with a breakdown of root-knot resistance genes in a number of crops. Three greenhouse trials were performed from 2014 to 2015 investigate the effect of high soil temperature on the efficacy of Rk1 and/or Rk2 genes in reducing parasitism by a population of M. incognita race 3. Trials were arranged in randomized complete block design in open-top growth chambers set at 25°, 30°, and 35°C. Plants were inoculated with 3,000 eggs and data were collected 35 days post-inoculation. Galling, numbers of egg masses and eggs, and reproductive index were compared across cultivar entries. Nematode reproduction was reduced at 25°C and 30°C on entries possessing Rk1 and Rk1Rk2 compared to the susceptible entry and the entry possessing only Rk2. However, there were often no significant differences in reproduction at 35°C between entries with Rk1 and/or Rk2 compared to the susceptible control, indicating an increase of root-knot nematode parasitism on resistant entries at higher temperatures. Although seasonal differences in nematode reproduction were observed among experiments, relative differences among tobacco genotypes remained generally consistent.

2.
J Nematol ; 48(2): 79-86, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27418700

RESUMO

Most commercial tobacco cultivars possess the Rk1 resistance gene to races 1 and 3 of Meloidogyne incognita and race 1 of Meloidogyne arenaria, which has caused a shift in population prevalence in Virginia tobacco fields toward other species and races. A number of cultivars now also possess the Rk2 gene for root-knot resistance. Experiments were conducted in 2013 to 2014 to examine whether possessing both Rk1 and Rk2 increases resistance to a variant of M. incognita race 3 compared to either gene alone. Greenhouse trials were arranged in a completely randomized design with Coker 371-Gold (C371G; susceptible), NC 95 and SC 72 (Rk1Rk1), T-15-1-1 (Rk2Rk2), and STNCB-2-28 and NOD 8 (Rk1Rk1 and Rk2Rk2). Each plant was inoculated with 5,000 root-knot nematode eggs; data were collected 60 d postinoculation. Percent galling and numbers of egg masses and eggs were counted, the latter being used to calculate the reproductive index on each host. Despite variability, entries with both Rk1 and Rk2 conferred greater resistance to a variant of M. incognita race 3 than plants with Rk1 or Rk2 alone. Entries with Rk1 alone were successful in reducing root galling and nematode reproduction compared to the susceptible control. Entry T-15-1-1 did not reduce galling compared to the susceptible control but often suppressed reproduction.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa