Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Immunity ; 55(11): 2085-2102.e9, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36228615

RESUMO

Microglia and border-associated macrophages (BAMs) are brain-resident self-renewing cells. Here, we examined the fate of microglia, BAMs, and recruited macrophages upon neuroinflammation and through resolution. Upon infection, Trypanosoma brucei parasites invaded the brain via its border regions, triggering brain barrier disruption and monocyte infiltration. Fate mapping combined with single-cell sequencing revealed microglia accumulation around the ventricles and expansion of epiplexus cells. Depletion experiments using genetic targeting revealed that resident macrophages promoted initial parasite defense and subsequently facilitated monocyte infiltration across brain barriers. These recruited monocyte-derived macrophages outnumbered resident macrophages and exhibited more transcriptional plasticity, adopting antimicrobial gene expression profiles. Recruited macrophages were rapidly removed upon disease resolution, leaving no engrafted monocyte-derived cells in the parenchyma, while resident macrophages progressively reverted toward a homeostatic state. Long-term transcriptional alterations were limited for microglia but more pronounced in BAMs. Thus, brain-resident and recruited macrophages exhibit diverging responses and dynamics during infection and resolution.


Assuntos
Macrófagos , Doenças Neuroinflamatórias , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Microglia/metabolismo , Encéfalo
2.
J Nucl Med ; 64(12): 1941-1948, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38040444

RESUMO

Fibroblast activation protein α (FAP) is highly expressed on cancer-associated fibroblasts of epithelial-derived cancers. Breast, colon, and pancreatic tumors often show strong desmoplastic reactions, which result in a dominant presence of stromal cells. FAP has gained interest as a target for molecular imaging and targeted therapies. Single-domain antibodies (sdAbs) are the smallest antibody-derived fragments with beneficial pharmacokinetic properties for molecular imaging and targeted therapy. Methods: We describe the generation, selection, and characterization of a sdAb against FAP. In mice, we assessed its imaging and therapeutic potential after radiolabeling with tracer-dose 131I and 68Ga for SPECT and PET imaging, respectively, and with 131I and 225Ac for targeted radionuclide therapy. Results: The lead sdAb, 4AH29, exhibiting picomolar affinity for a distinct FAP epitope, recognized both purified and membrane-bound FAP protein. Radiolabeled versions, including [68Ga]Ga-DOTA-4AH29, [225Ac]Ac-DOTA-4AH29, and [131I]I-guanidinomethyl iodobenzoate (GMIB)-4AH29, displayed radiochemical purities exceeding 95% and effectively bound to recombinant human FAP protein and FAP-positive GM05389 human fibroblasts. These radiolabeled compounds exhibited rapid and specific accumulation in human FAP-positive U87-MG glioblastoma tumors, with low but specific uptake in lymph nodes, uterus, bone, and skin (∼2-3 percentage injected activity per gram of tissue [%IA/g]). Kidney clearance of unbound [131I]I-GMIB-4AH29 was fast (<1 %IA/g after 24 h), whereas [225Ac]Ac-DOTA-4AH29 exhibited slower clearance (8.07 ± 1.39 %IA/g after 24 h and 2.47 ± 0.18 %IA/g after 96 h). Mice treated with [225Ac]Ac-DOTA-4AH29 and [131I]I-GMIB-4AH29 demonstrated prolonged survival compared with those receiving vehicle solution. Conclusion: [68Ga]Ga-DOTA-4AH29 and [131I]I-GMIB-4AH29 enable precise FAP-positive tumor detection in mice. Therapeutic [225Ac]Ac-DOTA-4AH29 and [131I]I-GMIB-4AH29 exhibit strong and sustained tumor targeting, resulting in dose-dependent therapeutic effects in FAP-positive tumor-bearing mice, albeit with kidney toxicity observed later for [225Ac]Ac-DOTA-4AH29. This study confirms the potential of radiolabeled sdAb 4AH29 as a radiotheranostic agent for FAP-positive cancers, warranting clinical evaluation.


Assuntos
Neoplasias Pancreáticas , Anticorpos de Domínio Único , Feminino , Humanos , Animais , Camundongos , Anticorpos de Domínio Único/metabolismo , Radioisótopos de Gálio , Neoplasias Pancreáticas/patologia , Compostos Radiofarmacêuticos/química , Linhagem Celular Tumoral
3.
Nat Protoc ; 17(10): 2354-2388, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35931780

RESUMO

Brain-immune cross-talk and neuroinflammation critically shape brain physiology in health and disease. A detailed understanding of the brain immune landscape is essential for developing new treatments for neurological disorders. Single-cell technologies offer an unbiased assessment of the heterogeneity, dynamics and functions of immune cells. Here we provide a protocol that outlines all the steps involved in performing single-cell multi-omic analysis of the brain immune compartment. This includes a step-by-step description on how to microdissect the border regions of the mouse brain, together with dissociation protocols tailored to each of these tissues. These combine a high yield with minimal dissociation-induced gene expression changes. Next, we outline the steps involved for high-dimensional flow cytometry and droplet-based single-cell RNA sequencing via the 10x Genomics platform, which can be combined with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and offers a higher throughput than plate-based methods. Importantly, we detail how to implement CITE-seq with large antibody panels to obtain unbiased protein-expression screening coupled to transcriptome analysis. Finally, we describe the main steps involved in the analysis and interpretation of the data. This optimized workflow allows for a detailed assessment of immune cell heterogeneity and activation in the whole brain or specific border regions, at RNA and protein level. The wet lab workflow can be completed by properly trained researchers (with basic proficiency in cell and molecular biology) and takes between 6 and 11 h, depending on the chosen procedures. The computational analysis requires a background in bioinformatics and programming in R.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , RNA , Animais , Encéfalo , Epitopos , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Camundongos , RNA/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma
4.
Front Immunol ; 12: 777524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917090

RESUMO

Glioblastoma (GBM) is the most common malignant primary brain tumor. Glioblastomas contain a large non-cancerous stromal compartment including various populations of tumor-associated macrophages and other myeloid cells, of which the presence was documented to correlate with malignancy and reduced survival. Via single-cell RNA sequencing of human GBM samples, only very low expression of PD-1, PD-L1 or PD-L2 could be detected, whereas the tumor micro-environment featured a marked expression of signal regulatory protein alpha (SIRPα), an inhibitory receptor present on myeloid cells, as well as its widely distributed counter-receptor CD47. CITE-Seq revealed that both SIRPα RNA and protein are prominently expressed on various populations of myeloid cells in GBM tumors, including both microglia- and monocyte-derived tumor-associated macrophages (TAMs). Similar findings were obtained in the mouse orthotopic GL261 GBM model, indicating that SIRPα is a potential target on GBM TAMs in mouse and human. A set of nanobodies, single-domain antibody fragments derived from camelid heavy chain-only antibodies, was generated against recombinant SIRPα and characterized in terms of affinity for the recombinant antigen and binding specificity on cells. Three selected nanobodies binding to mouse SIRPα were radiolabeled with 99mTc, injected in GL261 tumor-bearing mice and their biodistribution was evaluated using SPECT/CT imaging and radioactivity detection in dissected organs. Among these, Nb15 showed clear accumulation in peripheral organs such as spleen and liver, as well as a clear tumor uptake in comparison to a control non-targeting nanobody. A bivalent construct of Nb15 exhibited an increased accumulation in highly vascularized organs that express the target, such as spleen and liver, as compared to the monovalent format. However, penetration into the GL261 brain tumor fell back to levels detected with a non-targeting control nanobody. These results highlight the tumor penetration advantages of the small monovalent nanobody format and provide a qualitative proof-of-concept for using SIRPα-targeting nanobodies to noninvasively image myeloid cells in intracranial GBM tumors with high signal-to-noise ratios, even without blood-brain barrier permeabilization.


Assuntos
Antígenos de Diferenciação/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Imagem Molecular/métodos , Células Mieloides/metabolismo , Receptores Imunológicos/metabolismo , Anticorpos de Domínio Único , Animais , Anticorpos Antineoplásicos , Antígenos de Diferenciação/genética , Biomarcadores Tumorais , Neoplasias Encefálicas/etiologia , Antígeno CD47/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Expressão Gênica , Glioblastoma/etiologia , Especificidade de Hospedeiro , Humanos , Imuno-Histoquímica , Camundongos , Células Mieloides/patologia , Receptores Imunológicos/genética
5.
Adv Sci (Weinh) ; 8(10): 2004574, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026453

RESUMO

Tumor-associated macrophages (TAMs) promote the immune suppressive microenvironment inside tumors and are, therefore, considered as a promising target for the next generation of cancer immunotherapies. To repolarize their phenotype into a tumoricidal state, the Toll-like receptor 7/8 agonist imidazoquinoline IMDQ is site-specifically and quantitatively coupled to single chain antibody fragments, so-called nanobodies, targeting the macrophage mannose receptor (MMR) on TAMs. Intravenous injection of these conjugates result in a tumor- and cell-specific delivery of IMDQ into MMRhigh TAMs, causing a significant decline in tumor growth. This is accompanied by a repolarization of TAMs towards a pro-inflammatory phenotype and an increase in anti-tumor T cell responses. Therefore, the therapeutic benefit of such nanobody-drug conjugates may pave the road towards effective macrophage re-educating cancer immunotherapies.


Assuntos
Imidazóis/química , Neoplasias Pulmonares/tratamento farmacológico , Receptor de Manose/imunologia , Quinolinas/química , Anticorpos de Domínio Único/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Modelos Animais de Doenças , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Glicoproteínas de Membrana/agonistas , Camundongos Endogâmicos C57BL , Camundongos Knockout , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Receptor 6 Toll-Like/agonistas , Receptor 7 Toll-Like/agonistas , Microambiente Tumoral
6.
Nat Neurosci ; 24(4): 595-610, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33782623

RESUMO

Glioblastomas are aggressive primary brain cancers that recur as therapy-resistant tumors. Myeloid cells control glioblastoma malignancy, but their dynamics during disease progression remain poorly understood. Here, we employed single-cell RNA sequencing and CITE-seq to map the glioblastoma immune landscape in mouse tumors and in patients with newly diagnosed disease or recurrence. This revealed a large and diverse myeloid compartment, with dendritic cell and macrophage populations that were conserved across species and dynamic across disease stages. Tumor-associated macrophages (TAMs) consisted of microglia- or monocyte-derived populations, with both exhibiting additional heterogeneity, including subsets with conserved lipid and hypoxic signatures. Microglia- and monocyte-derived TAMs were self-renewing populations that competed for space and could be depleted via CSF1R blockade. Microglia-derived TAMs were predominant in newly diagnosed tumors, but were outnumbered by monocyte-derived TAMs following recurrence, especially in hypoxic tumor environments. Our results unravel the glioblastoma myeloid landscape and provide a framework for future therapeutic interventions.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Macrófagos Associados a Tumor/citologia , Macrófagos Associados a Tumor/imunologia , Animais , Humanos , Camundongos , Análise de Célula Única
7.
Brain Res Bull ; 155: 61-66, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31805305

RESUMO

Levodopa is a precursor to dopamine that has been shown to improve functional recovery following stroke partly achieved through mechanisms of brain plasticity. This study investigates if dopamine might affect plasticity by having a direct effect on synaptic plasticity through alterations in neurotransmitter release and re-uptake. Synaptogyrin is a synaptic vesicle protein that has been suggested to be involved in dopamine re-uptake in the synaptic terminal. Therefore, we investigated if levodopa has an effect on the expression of synaptogyrin 1. Thy1-YFP mice were subjected to photothrombosis as an experimental model of stroke. Starting two days after surgery they were treated with either levodopa or a vehicle solution (saline) on a daily basis until day seven following surgery. On day seven they were sacrificed and their brains stained for Dopamine 1 receptor (D1R), Dopamine 2 receptor (D2R) and Parvalbumin (PV). Neu-N stainings were used to estimate infarct size. A second group of mice were subjected to photothrombosis and also treated with either levodopa or a vehicle solution in the same manner as previously mentioned. On day seven they were then sacrificed, and samples of brain tissue were taken for protein determination. Western blots were carried out to investigate possible differences in synaptogyrin expression between the two groups. Immunofluorescent stains showed the presence of dopamine receptors on the YFP-positive neurons and on PV-expressing neurones. Our Western Blot analysis showed a significant decrease in the expression of synaptogyrin in levodopa-treated mice. Our stains showed co-localisation with Thy-1 neurones and PV-expressing neurones for both D1 and D2 receptors. This indicates that dopamine has the ability to bind to, and directly influence cortical neurons, as well as inhibitory interneurons. We discovered a considerable decrease in synaptogyrin expression through levodopa treatment, suggesting that this might be a mechanism for regulating brain plasticity.


Assuntos
Encéfalo/efeitos dos fármacos , Dopaminérgicos/administração & dosagem , Levodopa/administração & dosagem , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/metabolismo , Sinaptogirinas/metabolismo , Animais , Encéfalo/metabolismo , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
8.
Elife ; 92020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32014107

RESUMO

Cancer immunotherapy by immune checkpoint blockade has proven its great potential by saving the lives of a proportion of late stage patients with immunogenic tumor types. However, even in these sensitive tumor types, the majority of patients do not sufficiently respond to the therapy. Furthermore, other tumor types, including glioblastoma, remain largely refractory. The glioblastoma immune microenvironment is recognized as highly immunosuppressive, posing a major hurdle for inducing immune-mediated destruction of cancer cells. Scattered information is available about the presence and activity of immunosuppressive or immunostimulatory cell types in glioblastoma tumors, including tumor-associated macrophages, tumor-infiltrating dendritic cells and regulatory T cells. These cell types are heterogeneous at the level of ontogeny, spatial distribution and functionality within the tumor immune compartment, providing insight in the complex cellular and molecular interplay that determines the immune refractory state in glioblastoma. This knowledge may also yield next generation molecular targets for therapeutic intervention.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imunoterapia , Microambiente Tumoral/imunologia , Encéfalo/citologia , Encéfalo/imunologia , Encéfalo/metabolismo , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Glioblastoma/imunologia , Glioblastoma/terapia , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia
9.
J Control Release ; 314: 1-11, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31626860

RESUMO

Radioimmunotherapy (RIT) aims to deliver a high radiation dose to cancer cells, while minimizing the exposure of normal cells. Typically, monoclonal antibodies are used to target the radionuclides to cancer cell surface antigens. However, antibodies face limitations due to their poor tumor penetration and suboptimal pharmacokinetics, while the expression of their target on the cancer cell surface may be gradually lost. In addition, most antigens are expressed in a limited number of tumor types. To circumvent these problems, we developed a Nanobody (Nb)-based RIT against a prominent stromal cell (stromal-targeting radioimmunotherapy or STRIT) present in nearly all tumors, the tumor-associated macrophage (TAM). Macrophage Mannose Receptor (MMR) functions as a stable molecular target on TAM residing in hypoxic areas, further allowing the delivery of a high radiation dose to the more radioresistant hypoxic tumor regions. Since MMR expression is not restricted to TAM, we first optimized a strategy to block extra-tumoral MMR to prevent therapy-induced toxicity. A 100-fold molar excess of unlabeled bivalent Nb largely blocks extra-tumoral binding of 177Lu-labeled anti-MMR Nb and prevents toxicity, while still allowing the intra-tumoral binding of the monovalent Nb. Interestingly, three doses of 177Lu-labeled anti-MMR Nb resulted in a significantly retarded tumor growth, thereby outcompeting the effects of anti-PD1, anti-VEGFR2, doxorubicin and paclitaxel in the TS/A mammary carcinoma model. Together, these data propose anti-MMR STRIT as a valid new approach for cancer treatment.


Assuntos
Adenocarcinoma/radioterapia , Neoplasias Mamárias Experimentais/radioterapia , Radioimunoterapia/métodos , Anticorpos de Domínio Único/imunologia , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Animais , Progressão da Doença , Doxorrubicina/farmacologia , Feminino , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/farmacologia , Receptores de Superfície Celular/metabolismo , Células Estromais/imunologia
10.
Nat Neurosci ; 22(6): 1021-1035, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061494

RESUMO

While the roles of parenchymal microglia in brain homeostasis and disease are fairly clear, other brain-resident myeloid cells remain less well understood. By dissecting border regions and combining single-cell RNA-sequencing with high-dimensional cytometry, bulk RNA-sequencing, fate-mapping and microscopy, we reveal the diversity of non-parenchymal brain macrophages. Border-associated macrophages (BAMs) residing in the dura mater, subdural meninges and choroid plexus consisted of distinct subsets with tissue-specific transcriptional signatures, and their cellular composition changed during postnatal development. BAMs exhibited a mixed ontogeny, and subsets displayed distinct self-renewal capacity following depletion and repopulation. Single-cell and fate-mapping analysis both suggested that there is a unique microglial subset residing on the apical surface of the choroid plexus epithelium. Finally, gene network analysis and conditional deletion revealed IRF8 as a master regulator that drives the maturation and diversity of brain macrophages. Our results provide a framework for understanding host-macrophage interactions in both the healthy and diseased brain.


Assuntos
Encéfalo/citologia , Fatores Reguladores de Interferon/metabolismo , Macrófagos/citologia , Macrófagos/fisiologia , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia
11.
FEBS J ; 285(4): 777-787, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28834216

RESUMO

Tumor-associated macrophages (TAM) are by now established as important regulators of tumor progression by impacting on tumor immunity, angiogenesis, and metastasis. Hence, a multitude of approaches are currently pursued to intervene with TAM's protumor activities, the most advanced of which being a blockade of macrophage-colony stimulating factor (M-CSF)/M-CSF receptor (M-CSFR) signaling. M-CSFR signaling largely impacts on the differentiation of macrophages, including TAM, and hence strongly influences the numbers of these cells in tumors. However, a repolarization of TAM toward a more antitumor phenotype may be more elegant and may yield stronger effects on tumor growth. In this respect, several aspects of TAM behavior could be altered, such as their intratumoral localization, metabolism and regulatory pathways. Intervention strategies could include the use of small molecules but also new generations of biologicals which may complement the current success of immune checkpoint blockers. This review highlights current work on the search for new therapeutic targets in TAM.


Assuntos
Macrófagos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Humanos , Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa