RESUMO
SUMMARY: To advance biomedical research, increasingly large amounts of complex data need to be discovered and integrated. This requires syntactic and semantic validation to ensure shared understanding of relevant entities. This article describes the ELIXIR biovalidator, which extends the syntactic validation of the widely used AJV library with ontology-based validation of JSON documents. AVAILABILITY AND IMPLEMENTATION: Source code: https://github.com/elixir-europe/biovalidator, Release: v1.9.1, License: Apache License 2.0, Deployed at: https://www.ebi.ac.uk/biosamples/schema/validator/validate. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Disciplinas das Ciências Biológicas , Metadados , Semântica , SoftwareRESUMO
MOTIVATION: Modern genomic breeding methods rely heavily on very large amounts of phenotyping and genotyping data, presenting new challenges in effective data management and integration. Recently, the size and complexity of datasets have increased significantly, with the result that data are often stored on multiple systems. As analyses of interest increasingly require aggregation of datasets from diverse sources, data exchange between disparate systems becomes a challenge. RESULTS: To facilitate interoperability among breeding applications, we present the public plant Breeding Application Programming Interface (BrAPI). BrAPI is a standardized web service API specification. The development of BrAPI is a collaborative, community-based initiative involving a growing global community of over a hundred participants representing several dozen institutions and companies. Development of such a standard is recognized as critical to a number of important large breeding system initiatives as a foundational technology. The focus of the first version of the API is on providing services for connecting systems and retrieving basic breeding data including germplasm, study, observation, and marker data. A number of BrAPI-enabled applications, termed BrAPPs, have been written, that take advantage of the emerging support of BrAPI by many databases. AVAILABILITY AND IMPLEMENTATION: More information on BrAPI, including links to the specification, test suites, BrAPPs, and sample implementations is available at https://brapi.org/. The BrAPI specification and the developer tools are provided as free and open source.
Assuntos
Melhoramento Vegetal , Software , Interface Usuário-Computador , GenômicaRESUMO
Enabling data reuse and knowledge discovery is increasingly critical in modern science, and requires an effort towards standardising data publication practices. This is particularly challenging in the plant phenotyping domain, due to its complexity and heterogeneity. We have produced the MIAPPE 1.1 release, which enhances the existing MIAPPE standard in coverage, to support perennial plants, in structure, through an explicit data model, and in clarity, through definitions and examples. We evaluated MIAPPE 1.1 by using it to express several heterogeneous phenotyping experiments in a range of different formats, to demonstrate its applicability and the interoperability between the various implementations. Furthermore, the extended coverage is demonstrated by the fact that one of the datasets could not have been described under MIAPPE 1.0. MIAPPE 1.1 marks a major step towards enabling plant phenotyping data reusability, thanks to its extended coverage, and especially the formalisation of its data model, which facilitates its implementation in different formats. Community feedback has been critical to this development, and will be a key part of ensuring adoption of the standard.
Assuntos
Fenômica , Plantas , Plantas/genéticaRESUMO
Phenomic datasets need to be accessible to the scientific community. Their reanalysis requires tracing relevant information on thousands of plants, sensors and events. The open-source Phenotyping Hybrid Information System (PHIS) is proposed for plant phenotyping experiments in various categories of installations (field, glasshouse). It unambiguously identifies all objects and traits in an experiment and establishes their relations via ontologies and semantics that apply to both field and controlled conditions. For instance, the genotype is declared for a plant or plot and is associated with all objects related to it. Events such as successive plant positions, anomalies and annotations are associated with objects so they can be easily retrieved. Its ontology-driven architecture is a powerful tool for integrating and managing data from multiple experiments and platforms, for creating relationships between objects and enriching datasets with knowledge and metadata. It interoperates with external resources via web services, thereby allowing data integration into other systems; for example, modelling platforms or external databases. It has the potential for rapid diffusion because of its ability to integrate, manage and visualize multi-source and multi-scale data, but also because it is based on 10 yr of trial and error in our groups.
Assuntos
Bases de Dados Factuais , Sistemas de Informação , Internet , Plantas , Ontologias Biológicas , Curadoria de Dados , Visualização de Dados , Fenótipo , Interface Usuário-Computador , Fluxo de TrabalhoRESUMO
Recent methodological developments in plant phenotyping, as well as the growing importance of its applications in plant science and breeding, are resulting in a fast accumulation of multidimensional data. There is great potential for expediting both discovery and application if these data are made publicly available for analysis. However, collection and storage of phenotypic observations is not yet sufficiently governed by standards that would ensure interoperability among data providers and precisely link specific phenotypes and associated genomic sequence information. This lack of standards is mainly a result of a large variability of phenotyping protocols, the multitude of phenotypic traits that are measured, and the dependence of these traits on the environment. This paper discusses the current situation of standardization in the area of phenomics, points out the problems and shortages, and presents the areas that would benefit from improvement in this field. In addition, the foundations of the work that could revise the situation are proposed, and practical solutions developed by the authors are introduced.
Assuntos
Produtos Agrícolas/genética , Genoma de Planta , Genômica/métodos , Fenótipo , Estatística como Assunto/métodosRESUMO
SyntenyViewer is a public web-based tool relying on a relational database available at https://urgi.versailles.inrae.fr/synteny delivering comparative genomics data and associated reservoir of conserved genes between angiosperm species for both fundamental (evolutionary studies) and applied (translational research) applications. SyntenyViewer is made available for (i) providing comparative genomics data for seven major botanical families of flowering plants, (ii) delivering a robust catalog of 103 465 conserved genes between 44 species and inferred ancestral genomes, (iii) allowing us to investigate the evolutionary fate of ancestral genes and genomic regions in modern species through duplications, inversions, deletions, fusions, fissions and translocations, (iv) use as a tool to conduct translational research of key trait-related genes from model species to crops and (v) offering to host any comparative genomics data following simplified procedures and formats Database URL https://urgi.versailles.inrae.fr/synteny.
Assuntos
Magnoliopsida , Pesquisa Translacional Biomédica , Genômica , Produtos Agrícolas , Bases de Dados FactuaisRESUMO
In this opinion article, we discuss the formatting of files from (plant) genotyping studies, in particular the formatting of (meta-) data in Variant Call Format (VCF) files. The flexibility of the VCF format specification facilitates its use as a generic interchange format across domains but can lead to inconsistency between files in the presentation of metadata. To enable fully autonomous machine actionable data flow, generic elements need to be further specified. We strongly support the merits of the FAIR principles and see the need to facilitate them also through technical implementation specifications. VCF files are an established standard for the exchange and publication of genotyping data. Other data formats are also used to capture variant call data (for example, the HapMap format and the gVCF format), but none currently have the reach of VCF. In VCF, only the sites of variation are described, whereas in gVCF, all positions are listed, and confidence values are also provided. For the sake of simplicity, we will only discuss VCF and our recommendations for its use. However, the part of the VCF standard relating to metadata (as opposed to the actual variant calls) defines a syntactic format but no vocabulary, unique identifier or recommended content. In practice, often only sparse (if any) descriptive metadata is included. When descriptive metadata is provided, proprietary metadata fields are frequently added that have not been agreed upon within the community which may limit long-term and comprehensive interoperability. To address this, we propose recommendations for supplying and encoding metadata, focusing on use cases from the plant sciences. We expect there to be overlap, but also divergence, with the needs of other domains.
Assuntos
Metadados , Software , GenótipoRESUMO
Heterogeneous and multidisciplinary data generated by research on sustainable global agriculture and agrifood systems requires quality data labeling or annotation in order to be interoperable. As recommended by the FAIR principles, data, labels, and metadata must use controlled vocabularies and ontologies that are popular in the knowledge domain and commonly used by the community. Despite the existence of robust ontologies in the Life Sciences, there is currently no comprehensive full set of ontologies recommended for data annotation across agricultural research disciplines. In this paper, we discuss the added value of the Ontologies Community of Practice (CoP) of the CGIAR Platform for Big Data in Agriculture for harnessing relevant expertise in ontology development and identifying innovative solutions that support quality data annotation. The Ontologies CoP stimulates knowledge sharing among stakeholders, such as researchers, data managers, domain experts, experts in ontology design, and platform development teams.
RESUMO
OBJECTIVES: Persian walnut (Juglans regia L.), the walnut species cultivated for nut production, is grown worldwide in temperate areas. In this work, chronological phenotypic data have been collected regarding a part of the walnut genetic resources of the French National Institute for Agricultural Research (INRA) of Bordeaux. Using a well described ontology, these data have been collected in order to assess the phenotypic variations among the accessions, and to better manage the germplasm collection. These data can also be helpful for any breeding program as they provide a clear phenotypic characterization of the main cultivars. DATA DESCRIPTION: This paper introduces a dataset collected for 150 J. regia accessions for a period from 1965 to 2016, and for 3 observation sites, released as comma separated value spreadsheet. It includes observations about phenological traits (e.g. flowering dates), traits related to in-shell walnut (e.g. weight and size), and traits related to kernel (e.g. color). It can be used by other researchers particularly for multi-site phenological studies in the context of climate change since climate data files are also available. In addition, a complete walnut ontology was deposited in this repository and can assist to standardize the management of any walnut germplasm collection.
Assuntos
Agricultura/métodos , Variação Genética , Juglans/genética , Nozes/genética , Clima , Mudança Climática , França , Juglans/classificação , Juglans/crescimento & desenvolvimento , Nozes/crescimento & desenvolvimento , Fenótipo , Melhoramento Vegetal , Especificidade da Espécie , Fatores de TempoRESUMO
BACKGROUND: Thanks to their ability to move around and replicate within genomes, transposable elements (TEs) are perhaps the most important contributors to genome plasticity and evolution. Their detection and annotation are considered essential in any genome sequencing project. The number of fully sequenced genomes is rapidly increasing with improvements in high-throughput sequencing technologies. A fully automated de novo annotation process for TEs is therefore required to cope with the deluge of sequence data.However, all automated procedures are error-prone, and an automated procedure for TE identification and classification would be no exception. It is therefore crucial to provide not only the TE reference sequences, but also evidence justifying their classification, at the scale of the whole genome. A few TE databases already exist, but none provides evidence to justify TE classification. Moreover, biological information about the sequences remains globally poor. RESULTS: We present here the RepetDB database developed in the framework of GnpIS, a genetic and genomic information system. RepetDB is designed to store and retrieve detected, classified and annotated TEs in a standardized manner. RepetDB is an implementation with extensions of InterMine, an open-source data warehouse framework used here to store, search, browse, analyze and compare all the data recorded for each TE reference sequence. InterMine can display diverse information for each sequence and allows simple to very complex queries. Finally, TE data are displayed via a worldwide data discovery portal. RepetDB is accessible at urgi.versailles.inra.fr/repetdb. CONCLUSIONS: RepetDB is designed to be a TE knowledge base populated with full de novo TE annotations of complete (or near-complete) genome sequences. Indeed, the description and classification of TEs facilitates the exploration of specific TE families, superfamilies or orders across a large range of species. It also makes possible cross-species searches and comparisons of TE family content between genomes.
RESUMO
The Wheat@URGI portal has been developed to provide the international community of researchers and breeders with access to the bread wheat reference genome sequence produced by the International Wheat Genome Sequencing Consortium. Genome browsers, BLAST, and InterMine tools have been established for in-depth exploration of the genome sequence together with additional linked datasets including physical maps, sequence variations, gene expression, and genetic and phenomic data from other international collaborative projects already stored in the GnpIS information system. The portal provides enhanced search and browser features that will facilitate the deployment of the latest genomics resources in wheat improvement.
Assuntos
Genoma de Planta , Análise de Sequência de DNA , Triticum/genética , Sequência de Bases , Pão , Mineração de Dados , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fenótipo , Padrões de ReferênciaRESUMO
Genomic projects heavily depend on genome annotations and are limited by the current deficiencies in the published predictions of gene structure and function. It follows that, improved annotation will allow better data mining of genomes, and more secure planning and design of experiments. The purpose of the GeneFarm project is to obtain homogeneous, reliable, documented and traceable annotations for Arabidopsis nuclear genes and gene products, and to enter them into an added-value database. This re-annotation project is being performed exhaustively on every member of each gene family. Performing a family-wide annotation makes the task easier and more efficient than a gene-by-gene approach since many features obtained for one gene can be extrapolated to some or all the other genes of a family. A complete annotation procedure based on the most efficient prediction tools available is being used by 16 partner laboratories, each contributing annotated families from its field of expertise. A database, named GeneFarm, and an associated user-friendly interface to query the annotations have been developed. More than 3000 genes distributed over 300 families have been annotated and are available at http://genoplante-info.infobiogen.fr/Genefarm/. Furthermore, collaboration with the Swiss Institute of Bioinformatics is underway to integrate the GeneFarm data into the protein knowledgebase Swiss-Prot.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Bases de Dados Genéticas , Genes de Plantas , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiologia , Filosofia , Integração de Sistemas , Interface Usuário-ComputadorRESUMO
In this article, we present a joint effort of the wheat research community, along with data and ontology experts, to develop wheat data interoperability guidelines. Interoperability is the ability of two or more systems and devices to cooperate and exchange data, and interpret that shared information. Interoperability is a growing concern to the wheat scientific community, and agriculture in general, as the need to interpret the deluge of data obtained through high-throughput technologies grows. Agreeing on common data formats, metadata, and vocabulary standards is an important step to obtain the required data interoperability level in order to add value by encouraging data sharing, and subsequently facilitate the extraction of new information from existing and new datasets. During a period of more than 18 months, the RDA Wheat Data Interoperability Working Group (WDI-WG) surveyed the wheat research community about the use of data standards, then discussed and selected a set of recommendations based on consensual criteria. The recommendations promote standards for data types identified by the wheat research community as the most important for the coming years: nucleotide sequence variants, genome annotations, phenotypes, germplasm data, gene expression experiments, and physical maps. For each of these data types, the guidelines recommend best practices in terms of use of data formats, metadata standards and ontologies. In addition to the best practices, the guidelines provide examples of tools and implementations that are likely to facilitate the adoption of the recommendations. To maximize the adoption of the recommendations, the WDI-WG used a community-driven approach that involved the wheat research community from the start, took into account their needs and practices, and provided them with a framework to keep the recommendations up to date. We also report this approach's potential to be generalizable to other (agricultural) domains.
RESUMO
BACKGROUND: Plant phenotypic data shrouds a wealth of information which, when accurately analysed and linked to other data types, brings to light the knowledge about the mechanisms of life. As phenotyping is a field of research comprising manifold, diverse and time-consuming experiments, the findings can be fostered by reusing and combining existing datasets. Their correct interpretation, and thus replicability, comparability and interoperability, is possible provided that the collected observations are equipped with an adequate set of metadata. So far there have been no common standards governing phenotypic data description, which hampered data exchange and reuse. RESULTS: In this paper we propose the guidelines for proper handling of the information about plant phenotyping experiments, in terms of both the recommended content of the description and its formatting. We provide a document called "Minimum Information About a Plant Phenotyping Experiment", which specifies what information about each experiment should be given, and a Phenotyping Configuration for the ISA-Tab format, which allows to practically organise this information within a dataset. We provide examples of ISA-Tab-formatted phenotypic data, and a general description of a few systems where the recommendations have been implemented. CONCLUSIONS: Acceptance of the rules described in this paper by the plant phenotyping community will help to achieve findable, accessible, interoperable and reusable data.
RESUMO
The genome sequences of many important Triticeae species, including bread wheat ( L.) and barley ( L.), remained uncharacterized for a long time because their high repeat content, large sizes, and polyploidy. As a result of improvements in sequencing technologies and novel analyses strategies, several of these have recently been deciphered. These efforts have generated new insights into Triticeae biology and genome organization and have important implications for downstream usage by breeders, experimental biologists, and comparative genomicists. transPLANT () is an EU-funded project aimed at constructing hardware, software, and data infrastructure for genome-scale research in the life sciences. Since the Triticeae data are intrinsically complex, heterogenous, and distributed, the transPLANT consortium has undertaken efforts to develop common data formats and tools that enable the exchange and integration of data from distributed resources. Here we present an overview of the individual Triticeae genome resources hosted by transPLANT partners, introduce the objectives of transPLANT, and outline common developments and interfaces supporting integrated data access.
Assuntos
Genoma de Planta , Genômica/métodos , Poaceae/genética , Evolução Molecular , Hordeum/genética , Poliploidia , Triticum/genéticaRESUMO
Data integration is a key challenge for modern bioinformatics. It aims to provide biologists with tools to explore relevant data produced by different studies. Large-scale international projects can generate lots of heterogeneous and unrelated data. The challenge is to integrate this information with other publicly available data. Nucleotide sequencing throughput has been improved with new technologies; this increases the need for powerful information systems able to store, manage and explore data. GnpIS is a multispecies integrative information system dedicated to plant and fungi pests. It bridges genetic and genomic data, allowing researchers access to both genetic information (e.g. genetic maps, quantitative trait loci, markers, single nucleotide polymorphisms, germplasms and genotypes) and genomic data (e.g. genomic sequences, physical maps, genome annotation and expression data) for species of agronomical interest. GnpIS is used by both large international projects and plant science departments at the French National Institute for Agricultural Research. Here, we illustrate its use. Database URL: http://urgi.versailles.inra.fr/gnpis.