Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Immunol ; 10(5): 540-50, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19363484

RESUMO

The cytidine deaminase AID (encoded by Aicda in mice and AICDA in humans) is critical for immunoglobulin class-switch recombination (CSR) and somatic hypermutation (SHM). Here we show that AID expression was induced by the HoxC4 homeodomain transcription factor, which bound to a highly conserved HoxC4-Oct site in the Aicda or AICDA promoter. This site functioned in synergy with a conserved binding site for the transcription factors Sp1, Sp3 and NF-kappaB. HoxC4 was 'preferentially' expressed in germinal center B cells and was upregulated by engagement of CD40 by CD154, as well as by lipopolysaccharide and interleukin 4. HoxC4 deficiency resulted in impaired CSR and SHM because of lower AID expression and not some other putative HoxC4-dependent activity. Enforced expression of AID in Hoxc4(-/-) B cells fully restored CSR. Thus, HoxC4 directly activates the Aicda promoter, thereby inducing AID expression, CSR and SHM.


Assuntos
Linfócitos B/imunologia , Citidina Desaminase/genética , Regulação da Expressão Gênica/imunologia , Proteínas de Homeodomínio/imunologia , Switching de Imunoglobulina/imunologia , Hipermutação Somática de Imunoglobulina/imunologia , Animais , Sequência de Bases , Sequência Conservada , Citidina Desaminase/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Centro Germinativo/citologia , Centro Germinativo/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nódulos Linfáticos Agregados/citologia , Nódulos Linfáticos Agregados/imunologia , Regiões Promotoras Genéticas/genética , Recombinação Genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Baço/citologia , Baço/imunologia , Linfócitos T
2.
Methods ; 177: 50-57, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669353

RESUMO

Mesenchymal stem or stromal cells are currently under clinical investigation for multiple diseases. While their mechanism of action is still not fully elucidated, vesicles secreted by MSCs are believed to recapitulate their therapeutic potentials to some extent. Microvesicles (MVs), also called as microparticles or ectosome, are among secreted vesicles that could transfer cytoplasmic cargo, including RNA and proteins, from emitting (source) cells to recipient cells. Given the importance of MVs, we here attempted to establish a method to isolate and characterize MVs secreted from unmodified human bone marrow derived MSCs (referred to as native MSCs, and their microvesicles as Native-MVs) and IFNγ stimulated MSCs (referred to as IFNγ-MSCs, and their microvesicles as IFNγ-MVs). We first describe an ultracentrifugation technique to isolate MVs from the conditioned cell culture media of MSCs. Next, we describe characterization and quality control steps to analyze the protein and RNA content of MVs. Finally, we examined the potential of MVs to exert immunomodulatory effects through induction of regulatory T cells (Tregs). Secretory vesicles from MSCs are promising alternatives for cell therapy with applications in drug delivery, regenerative medicine, and immunotherapy.


Assuntos
Micropartículas Derivadas de Células/química , Sistemas de Liberação de Medicamentos/métodos , Células-Tronco Mesenquimais/química , Proteômica/métodos , Medicina Regenerativa/métodos , Animais , Células da Medula Óssea/química , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Separação Celular/métodos , Micropartículas Derivadas de Células/imunologia , Meios de Cultivo Condicionados/química , Humanos , Imunoterapia/métodos , Interferon gama/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Proteínas/classificação , Proteínas/isolamento & purificação , RNA/classificação , RNA/isolamento & purificação , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
3.
Annu Rev Pharmacol Toxicol ; 57: 125-154, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27814025

RESUMO

Stem cells are critical to maintaining steady-state organ homeostasis and regenerating injured tissues. Recent intriguing reports implicate extracellular vesicles (EVs) as carriers for the distribution of morphogens and growth and differentiation factors from tissue parenchymal cells to stem cells, and conversely, stem cell-derived EVs carrying certain proteins and nucleic acids can support healing of injured tissues. We describe approaches to make use of engineered EVs as technology platforms in therapeutics and diagnostics in the context of stem cells. For some regenerative therapies, natural and engineered EVs from stem cells may be superior to single-molecule drugs, biologics, whole cells, and synthetic liposome or nanoparticle formulations because of the ease of bioengineering with multiple factors while retaining superior biocompatibility and biostability and posing fewer risks for abnormal differentiation or neoplastic transformation. Finally, we provide an overview of current challenges and future directions of EVs as potential therapeutic alternatives to cells for clinical applications.


Assuntos
Vesículas Extracelulares/fisiologia , Regeneração/fisiologia , Células-Tronco/fisiologia , Animais , Bioengenharia/métodos , Bioengenharia/tendências , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Exossomos/efeitos dos fármacos , Exossomos/fisiologia , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Regeneração/efeitos dos fármacos
4.
Cell Tissue Res ; 378(2): 155-162, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31209568

RESUMO

In recent years, human umbilical cord blood has emerged as a rich source of stem, stromal and immune cells for cell-based therapy. Among the stem cells from umbilical cord blood, CD45+ multipotent stem cells and CD90+ mesenchymal stem cells have the potential to treat type I diabetes mellitus (T1DM), to correct autoimmune dysfunction and replenish ß-cell numbers and function. In this review, we compare the general characteristics of umbilical cord blood-derived multipotent stem cells (UCB-SCs) and umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) and introduce their applications in T1DM. Although there are some differences in surface marker expression between UCB-SCs and UCB-MSCs, the two cell types display similar functions such as suppressing function of stimulated lymphocytes and imparting differentiation potential to insulin-producing cells (IPCs) in the setting of low immunogenicity, thereby providing a promising and safe approach for T1DM therapy.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Cordão Umbilical/citologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Humanos , Células Secretoras de Insulina/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Ratos
5.
J Immunol ; 199(9): 3326-3335, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28978694

RESUMO

We describe a novel B cell-associated cytokine, encoded by an uncharacterized gene (C17orf99; chromosome 17 open reading frame 99), that is expressed in bone marrow and fetal liver and whose expression is also induced in peripheral B cells upon activation. C17orf99 is only present in mammalian genomes, and it encodes a small (∼27-kDa) secreted protein unrelated to other cytokine families, suggesting a function in mammalian immune responses. Accordingly, C17orf99 expression is induced in the mammary gland upon the onset of lactation, and a C17orf99-/- mouse exhibits reduced levels of IgA in the serum, gut, feces, and lactating mammary gland. C17orf99-/- mice have smaller and fewer Peyer's patches and lower numbers of IgA-secreting cells. The microbiome of C17orf99-/- mice exhibits altered composition, likely a consequence of the reduced levels of IgA in the gut. Although naive B cells can express C17orf99 upon activation, their production increases following culture with various cytokines, including IL-4 and TGF-ß1, suggesting that differentiation can result in the expansion of C17orf99-producing B cells during some immune responses. Taken together, these observations indicate that C17orf99 encodes a novel B cell-associated cytokine, which we have called IL-40, that plays an important role in humoral immune responses and may also play a role in B cell development. Importantly, IL-40 is also expressed by human activated B cells and by several human B cell lymphomas. The latter observations suggest that it may play a role in the pathogenesis of certain human diseases.


Assuntos
Linfócitos B/imunologia , Regulação da Expressão Gênica/imunologia , Interleucinas/imunologia , Nódulos Linfáticos Agregados/imunologia , Animais , Humanos , Imunoglobulina A/imunologia , Interleucinas/genética , Células Jurkat , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Camundongos , Camundongos Knockout
6.
J Immunol ; 194(7): 3065-78, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25740947

RESUMO

Class switch DNA recombination (CSR) is central to the maturation of the Ab response because it diversifies Ab effector functions. Like somatic hypermutation, CSR requires activation-induced cytidine deaminase (AID), whose expression is restricted to B cells, as induced by CD40 engagement or dual TLR-BCR engagement (primary CSR-inducing stimuli). By constructing conditional knockout Igh(+/C)γ(1-cre)Rab7(fl/fl) mice, we identified a B cell-intrinsic role for Rab7, a small GTPase involved in intracellular membrane functions, in mediating AID induction and CSR. Igh(+/C)γ(1-cre)Rab7(fl/fl) mice displayed normal B and T cell development and were deficient in Rab7 only in B cells undergoing Igh(C)γ(1-cre) Iγ1-Sγ1-Cγ1-cre transcription, as induced--like Igh germline Iγ1-Sγ1-Cγ1 and Iε-Sε-Cε transcription--by IL-4 in conjunction with a primary CSR-inducing stimulus. These mice could not mount T-independent or T-dependent class-switched IgG1 or IgE responses while maintaining normal IgM levels. Igh(+/C)γ(1-cre)Rab7(fl/fl) B cells showed, in vivo and in vitro, normal proliferation and survival, normal Blimp-1 expression and plasma cell differentiation, as well as intact activation of the noncanonical NF-κB, p38 kinase, and ERK1/2 kinase pathways. They, however, were defective in AID expression and CSR in vivo and in vitro, as induced by CD40 engagement or dual TLR1/2-, TLR4-, TLR7-, or TLR9-BCR engagement. In Igh(+/C)γ(1-cre)Rab7(fl/fl) B cells, CSR was rescued by enforced AID expression. These findings, together with our demonstration that Rab7-mediated canonical NF-κB activation, as critical to AID induction, outline a novel role of Rab7 in signaling pathways that lead to AID expression and CSR, likely by promoting assembly of signaling complexes along intracellular membranes.


Assuntos
Formação de Anticorpos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Citidina Desaminase/genética , Regulação da Expressão Gênica , Switching de Imunoglobulina , Linfócitos T/imunologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Especificidade de Anticorpos/imunologia , Antígenos/imunologia , Linfócitos B/citologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Ordem dos Genes , Loci Gênicos , Células Germinativas/metabolismo , Imunoglobulina E/biossíntese , Imunoglobulina E/genética , Imunoglobulina E/imunologia , Imunoglobulina G/biossíntese , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias gama de Imunoglobulina/genética , Interleucina-4/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Transcrição Gênica , Proteínas rab de Ligação ao GTP/deficiência , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
7.
J Immunol ; 193(12): 5933-50, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25392531

RESUMO

Class-switch DNA recombination (CSR) and somatic hypermutation (SHM), which require activation-induced cytidine deaminase (AID), and plasma cell differentiation, which requires B lymphocyte-induced maturation protein-1 (Blimp-1), are critical for the generation of class-switched and hypermutated (mature) Ab and autoantibody responses. We show that histone deacetylase inhibitors valproic acid and butyrate dampened AICDA/Aicda (AID) and PRDM1/Prdm1 (Blimp-1) mRNAs by upregulating miR-155, miR-181b, and miR-361 to silence AICDA/Aicda, and miR-23b, miR-30a, and miR-125b to silence PRDM1/Prdm1, in human and mouse B cells. This led to downregulation of AID, Blimp-1, and X-box binding protein 1, thereby inhibiting CSR, SHM, and plasma cell differentiation without altering B cell viability or proliferation. The selectivity of histone deacetylase inhibitor-mediated silencing of AICDA/Aicda and PRDM1/Prdm1 was emphasized by unchanged expression of HoxC4 and Irf4 (important inducers/modulators of AICDA/Aicda), Rev1 and Ung (central elements for CSR/SHM), and Bcl6, Bach2, or Pax5 (repressors of PRDM1/Prdm1 expression), as well as unchanged expression of miR-19a/b, miR-20a, and miR-25, which are not known to regulate AICDA/Aicda or PRDM1/Prdm1. Through these B cell-intrinsic epigenetic mechanisms, valproic acid blunted class-switched and hypermutated T-dependent and T-independent Ab responses in C57BL/6 mice. In addition, it decreased class-switched and hypermutated autoantibodies, ameliorated disease, and extended survival in lupus MRL/Fas(lpr/lpr) mice. Our findings outline epigenetic mechanisms that modulate expression of an enzyme (AID) and transcription factors (Blimp-1 and X-box binding protein 1) that are critical to the B cell differentiation processes that underpin Ab and autoantibody responses. They also provide therapeutic proof-of-principle in autoantibody-mediated autoimmunity.


Assuntos
Formação de Anticorpos , Linfócitos B/efeitos dos fármacos , Linfócitos B/fisiologia , Citidina Desaminase/genética , Epigênese Genética , Inativação Gênica , Inibidores de Histona Desacetilases/farmacologia , MicroRNAs/genética , Proteínas Repressoras/genética , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Autoanticorpos/biossíntese , Autoanticorpos/imunologia , Linfócitos B/citologia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Metilação de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Switching de Imunoglobulina/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos MRL lpr , Plasmócitos/citologia , Plasmócitos/efeitos dos fármacos , Plasmócitos/imunologia , Plasmócitos/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo , Fatores de Transcrição de Fator Regulador X , Hipermutação Somática de Imunoglobulina/efeitos dos fármacos , Fatores de Transcrição/genética
8.
J Immunol ; 191(4): 1895-906, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23851690

RESUMO

Class switch DNA recombination (CSR) crucially diversifies Ab biologic effector functions. 14-3-3γ specifically binds to the 5'-AGCT-3' repeats in the IgH locus switch (S) regions. By interacting directly with the C-terminal region of activation-induced cytidine deaminase (AID), 14-3-3γ targets this enzyme to S regions to mediate CSR. In this study, we showed that 14-3-3γ was expressed in germinal center B cells in vivo and induced in B cells by T-dependent and T-independent primary CSR-inducing stimuli in vitro in humans and mice. Induction of 14-3-3γ was rapid, peaking within 3 h of stimulation by LPSs, and sustained over the course of AID and CSR induction. It was dependent on recruitment of NF-κB to the 14-3-3γ gene promoter. The NF-κB recruitment enhanced the occupancy of the CpG island within the 14-3-3γ promoter by CFP1, a component of the COMPASS histone methyltransferase complex, and promoter-specific enrichment of histone 3 lysine 4 trimethylation (H3K4me3), which is indicative of open chromatin state and marks transcription-competent promoters. NF-κB also potentiated the binding of B cell lineage-specific factor E2A to an E-box motif located immediately downstream of the two closely-spaced transcription start sites for sustained 14-3-3γ expression and CSR induction. Thus, 14-3-3γ induction in CSR is enabled by the CFP1-mediated H3K4me3 enrichment in the promoter, dependent on NF-κB and sustained by E2A.


Assuntos
Proteínas 14-3-3/biossíntese , Linfócitos B/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Ilhas de CpG/genética , Proteínas de Ligação a DNA/fisiologia , Switching de Imunoglobulina/fisiologia , NF-kappa B/fisiologia , Regiões Promotoras Genéticas/genética , Transativadores/fisiologia , Proteínas 14-3-3/genética , Regiões 3' não Traduzidas/genética , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Sequência de Bases , Células Cultivadas , Sequência Conservada , Citidina Desaminase/metabolismo , Elementos E-Box/genética , Centro Germinativo/metabolismo , Células HEK293 , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Cooperação Linfocítica , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Organismos Livres de Patógenos Específicos , Sítio de Iniciação de Transcrição , Regulação para Cima/genética , Regulação para Cima/imunologia
9.
Chembiochem ; 15(9): 1268-73, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24803415

RESUMO

We report a simple, versatile, multivalent ligand system that is capable of specifically and efficiently modulating cell-surface receptor clustering and function. The multivalent ligand is made of a polymeric DNA scaffold decorated with biorecognition ligands (i.e., antibodies) to interrogate and modulate cell receptor signaling and function. Using CD20 clustering-mediated apoptosis in B-cell cancer cells as a model system, we demonstrated that our multivalent ligand is significantly more effective at inducing apoptosis of target cancer cells than its monovalent counterpart. This multivalent DNA material approach represents a new chemical biology tool to interrogate cell receptor signaling and functions and to potentially manipulate such functions for the development of therapeutics.


Assuntos
Anticorpos/metabolismo , DNA/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Apoptose , Humanos , Células Jurkat , Ligantes , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
10.
J Biol Chem ; 287(25): 21520-9, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22556412

RESUMO

Immunoglobulin (Ig) class switch DNA recombination (CSR) and somatic hypermutation (SHM) are critical for the maturation of the antibody response. Activation-induced cytidine deaminase (AID) initiates CSR and SHM by deaminating deoxycytidines (dCs) in switch (S) and V(D)J region DNA, respectively, to generate deoxyuracils (dUs). Processing of dUs by uracil DNA glycosylase (UNG) yields abasic sites, which are excised by apurinic/apyrimidinic endonucleases, eventually generating double strand DNA breaks, the obligatory intermediates of CSR. Here, we found that the bivalent iron ion (Fe(2+), ferrous) suppressed CSR, leading to decreased number of switched B cells, decreased postrecombination Iµ-C(H) transcripts, and reduced titers of secreted class-switched IgG1, IgG3, and IgA antibodies, without alterations in critical CSR factors, such as AID, 14-3-3γ, or PTIP, or in general germline I(H)-S-C(H) transcription. Fe(2+) did not affect B cell proliferation or plasmacytoid differentiation. Rather, it inhibited AID-mediated dC deamination in a dose-dependent fashion. The inhibition of intrinsic AID enzymatic activity by Fe(2+) was specific, as shown by lack of inhibition of AID-mediated dC deamination by other bivalent metal ions, such as Zn(2+), Mn(2+), Mg(2+), or Ni(2+), and the inability of Fe(2+) to inhibit UNG-mediated dU excision. Overall, our findings have outlined a novel role of iron in modulating a B cell differentiation process that is critical to the generation of effective antibody responses to microbial pathogens and tumoral cells. They also suggest a possible role of iron in dampening AID-dependent autoimmunity and neoplastic transformation.


Assuntos
Citidina Desaminase/antagonistas & inibidores , Citidina Desaminase/metabolismo , Quebras de DNA de Cadeia Dupla , Switching de Imunoglobulina/fisiologia , Ferro/metabolismo , Plasmócitos/metabolismo , Recombinação Genética/fisiologia , Animais , Diferenciação Celular/fisiologia , Citidina Desaminase/genética , Imunoglobulina A/genética , Imunoglobulina A/metabolismo , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Camundongos , Plasmócitos/citologia
11.
Front Immunol ; 13: 882502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663959

RESUMO

Sustained signaling through the B cell antigen receptor (BCR) is thought to occur only when antigen(s) crosslink or disperse multiple BCR units, such as by multimeric antigens found on the surfaces of viruses or bacteria. B cell-intrinsic Toll-like receptor (TLR) signaling synergizes with the BCR to induce and shape antibody production, hallmarked by immunoglobulin (Ig) class switch recombination (CSR) of constant heavy chains from IgM/IgD to IgG, IgA or IgE isotypes, and somatic hypermutation (SHM) of variable heavy and light chains. Full B cell differentiation is essential for protective immunity, where class switched high affinity antibodies neutralize present pathogens, memory B cells are held in reserve for future encounters, and activated B cells also serve as semi-professional APCs for T cells. But the rules that fine-tune B cell differentiation remain partially understood, despite their being essential for naturally acquired immunity and for guiding vaccine development. To address this in part, we have developed a cell culture system using splenic B cells from naive mice stimulated with several biotinylated ligands and antibodies crosslinked by streptavidin reagents. In particular, biotinylated lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) agonist, and biotinylated anti-IgM were pre-assembled (multimerized) using streptavidin, or immobilized on nanoparticles coated with streptavidin, and used to active B cells in this precisely controlled, high throughput assay. Using B cell proliferation and Ig class switching as metrics for successful B cell activation, we show that the stimuli are both synergistic and dose-dependent. Crucially, the multimerized immunoconjugates are most active over a narrow concentration range. These data suggest that multimericity is an essential requirement for B cell BCR/TLRs ligands, and clarify basic rules for B cell activation. Such studies highlight the importance in determining the choice of single vs multimeric formats of antigen and PAMP agonists during vaccine design and development.


Assuntos
Switching de Imunoglobulina , Receptor 4 Toll-Like , Animais , Isotipos de Imunoglobulinas , Ligantes , Camundongos , Estreptavidina
12.
Sci Rep ; 12(1): 9198, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654904

RESUMO

The effects of adjuvants for increasing the immunogenicity of influenza vaccines are well known. However, the effect of adjuvants on increasing the breadth of cross-reactivity is less well understood. In this study we have performed a systematic screen of different toll-like receptor (TLR) agonists, with and without a squalene-in-water emulsion on the immunogenicity of a recombinant trimerized hemagglutinin (HA) vaccine in mice after single-dose administration. Antibody (Ab) cross-reactivity for other variants within and outside the immunizing subtype (homosubtypic and heterosubtypic cross-reactivity, respectively) was assessed using a protein microarray approach. Most adjuvants induced broad IgG profiles, although the response to a combination of CpG, MPLA and AddaVax (termed 'IVAX-1') appeared more quickly and reached a greater magnitude than the other formulations tested. Antigen-specific plasma cell labeling experiments show the components of IVAX-1 are synergistic. This adjuvant preferentially stimulates CD4 T cells to produce Th1>Th2 type (IgG2c>IgG1) antibodies and cytokine responses. Moreover, IVAX-1 induces identical homo- and heterosubtypic IgG and IgA cross-reactivity profiles when administered intranasally. Consistent with these observations, a single-cell transcriptomics analysis demonstrated significant increases in expression of IgG1, IgG2b and IgG2c genes of B cells in H5/IVAX-1 immunized mice relative to naïve mice, as well as significant increases in expression of the IFNγ gene of both CD4 and CD8 T cells. These data support the use of adjuvants for enhancing the breath and durability of antibody responses of influenza virus vaccines.


Assuntos
Vacinas contra Influenza , Influenza Humana , Vacinas Sintéticas/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Animais , Anticorpos Antivirais , Hemaglutininas , Humanos , Imunoglobulina G/química , Vacinas contra Influenza/imunologia , Camundongos , Camundongos Endogâmicos BALB C
13.
Crit Rev Immunol ; 30(1): 1-29, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20370617

RESUMO

Differentiation of naïve B cells, including immunoglobulin class-switch DNA recombination, is critical for the immune response and depends on the extensive integration of signals from the B-cell receptor (BCR), tumor necrosis factor (TNF) family members, Toll-like receptors (TLRs), and cytokine receptors. TLRs and BCR synergize to induce class-switch DNA recombination in T cell-dependent and T cell-independent antibody responses to microbial pathogens. BCR triggering together with simultaneous endosomal TLR engagement leads to enhanced B-cell differentiation and antibody responses. Te requirement of both BCR and TLR engagement would ensure appropriate antigen-specific activation in an infection. Co-stimulation of TLRs and BCR likely plays a significant role in anti-microbial antibody responses to contain pathogen loads until the T cell-dependent antibody responses peak. Furthermore, the temporal sequence of different signals is also critical for optimal B cell responses, as exemplified by the activation of B cells by initial TLR engagement, leading to the up-regulation of co-stimulatory CD80 and MCH-II receptors, which result in more efficient interactions with T cells, thereby enhancing the germinal center reaction and antibody affinity maturation. Overall, BCR and TLR stimulation and the integration with signals from the pathogen or immune cells and their products determine the ensuing B-cell antibody response.


Assuntos
Anticorpos Antibacterianos/imunologia , Switching de Imunoglobulina/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Recombinação Genética/imunologia , Receptores Toll-Like/imunologia , Animais , Linfócitos B/imunologia , Humanos , Switching de Imunoglobulina/genética , Recombinação Genética/genética , Linfócitos T/imunologia
14.
J Vis Exp ; (149)2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31403629

RESUMO

The influenza virus remains a significant cause of mortality worldwide due to the limited effectiveness of currently available vaccines. A key challenge to the development of universal influenza vaccines is high antigenic diversity resulting from antigenic drift. Overcoming this challenge requires novel research tools to measure the breadth of serum antibodies directed against many virus strains across different antigenic subtypes. Here, we present a protocol for analyzing the breadth of serum antibodies against diverse influenza virus strains using a protein microarray of influenza antigens. This influenza antigen microarray is constructed by printing purified hemagglutinin and neuraminidase antigens onto a nitrocellulose-coated membrane using a microarray printer. Human sera are incubated on the microarray to bind antibodies against the influenza antigens. Quantum-dot-conjugated secondary antibodies are used to simultaneously detect IgG and IgA antibodies binding to each antigen on the microarray. Quantitative antibody binding is measured as fluorescence intensity using a portable imager. Representative results are shown to demonstrate assay reproducibility in measuring subtype-specific and cross-reactive influenza antibodies in human sera. Compared to traditional methods such as ELISA, the influenza antigen microarray provides a high throughput multiplexed approach capable of testing hundreds of sera for multiple antibody isotypes against hundreds of antigens in a short time frame, and thus has applications in sero-surveillance and vaccine development. A limitation is the inability to distinguish binding antibodies from neutralizing antibodies.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Influenza Humana/imunologia , Análise Serial de Proteínas/métodos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Estudos de Coortes , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vacinas contra Influenza/imunologia , Neuraminidase/imunologia , Estudos Prospectivos , Reprodutibilidade dos Testes , Proteínas Virais/imunologia
15.
ACS Nano ; 13(6): 6670-6688, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31117376

RESUMO

To dissect therapeutic mechanisms of transplanted stem cells and develop exosome-based nanotherapeutics in treating autoimmune and neurodegenerative diseases, we assessed the effect of exosomes secreted from human mesenchymal stem cells (MSCs) in treating multiple sclerosis using an experimental autoimmune encephalomyelitis (EAE) mouse model. We found that intravenous administration of exosomes produced by MSCs stimulated by IFNγ (IFNγ-Exo) (i) reduced the mean clinical score of EAE mice compared to PBS control, (ii) reduced demyelination, (iii) decreased neuroinflammation, and (iv) upregulated the number of CD4+CD25+FOXP3+ regulatory T cells (Tregs) within the spinal cords of EAE mice. Co-culture of IFNγ-Exo with activated peripheral blood mononuclear cells (PBMCs) cells in vitro reduced PBMC proliferation and levels of pro-inflammatory Th1 and Th17 cytokines including IL-6, IL-12p70, IL-17AF, and IL-22 yet increased levels of immunosuppressive cytokine indoleamine 2,3-dioxygenase. IFNγ-Exo could also induce Tregs in vitro in a murine splenocyte culture, likely mediated by a third-party accessory cell type. Further, IFNγ-Exo characterization by deep RNA sequencing suggested that IFNγ-Exo contains anti-inflammatory RNAs, where their inactivation partially hindered the exosomes potential to induce Tregs. Furthermore, we found that IFNγ-Exo harbors multiple anti-inflammatory and neuroprotective proteins. These results not only shed light on stem cell therapeutic mechanisms but also provide evidence that MSC-derived exosomes can potentially serve as cell-free therapies in creating a tolerogenic immune response to treat autoimmune and central nervous system disorders.


Assuntos
Encefalomielite Autoimune Experimental/terapia , Exossomos/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Células Cultivadas , Exossomos/metabolismo , Feminino , Humanos , Interferon gama/farmacologia , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Linfócitos T Reguladores/imunologia
16.
Crit Rev Immunol ; 27(4): 367-97, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18197815

RESUMO

Expression and activity of activation-induced cytidine deaminase (AID) encoded by the aicda gene are essential for immunoglobulin (Ig) gene somatic hypermutation (SHM) and class switch DNA recombination (CSR). SHM and CSR unfold, in general, in germinal centers and/are central to the maturation of effective antibody responses. AID expression is induced by activated B-cell CD40 signaling, which is critical for the germinal center reaction, and is further enhanced by other stimuli, including interleukin-4 (IL-4) secreted from CD4+ T cells or Toll-like receptor (TLR)-activating bacterial and/or viral molecules. Integration of different intracellular signal transduction pathways, as activated by these stimuli, leads to a dynamic aicda-regulating program, which involves both positively acting trans-factors, such as Pax5, HoxC4, E47, and Irf8, and negative modulators, such as Blimp1 and Id2, to restrict aicda expression primarily to germinal center B cells. The phosphatidylinositol 3-kinase (PI 3-K), which functions downstream of activated B-cell receptor (BCR) signaling, likely plays an important role in triggering the downregulation of aicda expression in postgerminal center B cells and throughout plasmacytoid differentiation. In B cells undergoing SHM and CSR, AID activity, and, possibly, AID targeting to the Ig locus are regulated at a posttranslational level, including AID dimerization/oligomerization, nuclear/cytoplasmic AID translocation, and phosphorylation of the AID Ser38 residue by protein kinase A (PKA). Here, we discuss the role of B-cell activation signals, transcription regulation programs, and posttranslational modifications in controlling aicda expression and AID activity, thereby delineating an integrated model of modulation of SHM and CSR in the germinal center reaction.


Assuntos
Linfócitos B/imunologia , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Regulação Enzimológica da Expressão Gênica , Switching de Imunoglobulina , Recombinação Genética , Hipermutação Somática de Imunoglobulina , Animais , Linfócitos B/metabolismo , Diferenciação Celular/genética , Centro Germinativo/imunologia , Humanos , Síndrome de Imunodeficiência com Hiper-IgM/imunologia , Síndrome de Imunodeficiência com Hiper-IgM/metabolismo , Ativação Linfocitária , Fosforilação , Receptores Imunológicos/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
17.
Front Immunol ; 9: 1354, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29963051

RESUMO

Recent advances on using immune and stem cells as two-pronged approaches for type 1 diabetes mellitus (T1DM) treatment show promise for advancement into clinical practice. As T1DM is thought to arise from autoimmune attack destroying pancreatic ß-cells, increasing treatments that use biologics and cells to manipulate the immune system are achieving better results in pre-clinical and clinical studies. Increasingly, focus has shifted from small molecule drugs that suppress the immune system nonspecifically to more complex biologics that show enhanced efficacy due to their selectivity for specific types of immune cells. Approaches that seek to inhibit only autoreactive effector T cells or enhance the suppressive regulatory T cell subset are showing remarkable promise. These modern immune interventions are also enabling the transplantation of pancreatic islets or ß-like cells derived from stem cells. While complete immune tolerance and body acceptance of grafted islets and cells is still challenging, bioengineering approaches that shield the implanted cells are also advancing. Integrating immunotherapy, stem cell-mediated ß-cell or islet production and bioengineering to interface with the patient is expected to lead to a durable cure or pave the way for a clinical solution for T1DM.

18.
PLoS One ; 12(3): e0174195, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28296964

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0080414.].

19.
Sci Transl Med ; 9(400)2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747514

RESUMO

Despite decades of effort, little progress has been made to improve the treatment of cancer metastases. To leverage the central role of the mechanoenvironment in cancer metastasis, we present a mechanoresponsive cell system (MRCS) to selectively identify and treat cancer metastases by targeting the specific biophysical cues in the tumor niche in vivo. Our MRCS uses mechanosensitive promoter-driven mesenchymal stem cell (MSC)-based vectors, which selectively home to and target cancer metastases in response to specific mechanical cues to deliver therapeutics to effectively kill cancer cells, as demonstrated in a metastatic breast cancer mouse model. Our data suggest a strong correlation between collagen cross-linking and increased tissue stiffness at the metastatic sites, where our MRCS is specifically activated by the specific cancer-associated mechano-cues. MRCS has markedly reduced deleterious effects compared to MSCs constitutively expressing therapeutics. MRCS indicates that biophysical cues, specifically matrix stiffness, are appealing targets for cancer treatment due to their long persistence in the body (measured in years), making them refractory to the development of resistance to treatment. Our MRCS can serve as a platform for future diagnostics and therapies targeting aberrant tissue stiffness in conditions such as cancer and fibrotic diseases, and it should help to elucidate mechanobiology and reveal what cells "feel" in the microenvironment in vivo.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Metástase Neoplásica/prevenção & controle , Animais , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Transdução de Sinais/fisiologia
20.
Methods Mol Biol ; 1390: 229-48, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26803633

RESUMO

Toll-like receptors (TLRs) are expressed in B lymphocytes and contribute to B-cell activation, antibody responses, and their maturation. TLR stimulation of mouse B cells induces class switch DNA recombination (CSR) to isotypes specified by cytokines, and also induces formation of IgM(+) as well as class-switched plasma cells. B-cell receptor (BCR) signaling, while on its own inducing limited B-cell proliferation and no CSR, can enhance CSR driven by TLRs. Particular synergistic or antagonistic interactions among TLR pathways, BCR, and cytokine signaling can have important consequences for B-cell activation, CSR, and plasma cell formation. This chapter outlines protocols for the induction and analysis of B-cell activation and antibody production by TLRs with or without other stimuli.


Assuntos
Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Citometria de Fluxo , Ativação Linfocitária/imunologia , Receptores Toll-Like/metabolismo , Animais , Biomarcadores , Citometria de Fluxo/métodos , Separação Imunomagnética , Imunofenotipagem , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa