Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(8): E891-900, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675485

RESUMO

GABAA receptors shape synaptic transmission by modulating Cl(-) conductance across the cell membrane. Remarkably, animal toxins that specifically target GABAA receptors have not been identified. Here, we report the discovery of micrurotoxin1 (MmTX1) and MmTX2, two toxins present in Costa Rican coral snake venom that tightly bind to GABAA receptors at subnanomolar concentrations. Studies with recombinant and synthetic toxin variants on hippocampal neurons and cells expressing common receptor compositions suggest that MmTX1 and MmTX2 allosterically increase GABAA receptor susceptibility to agonist, thereby potentiating receptor opening as well as desensitization, possibly by interacting with the α(+)/ß(-) interface. Moreover, hippocampal neuron excitability measurements reveal toxin-induced transitory network inhibition, followed by an increase in spontaneous activity. In concert, toxin injections into mouse brain result in reduced basal activity between intense seizures. Altogether, we characterized two animal toxins that enhance GABAA receptor sensitivity to agonist, thereby establishing a previously unidentified class of tools to study this receptor family.


Assuntos
Venenos Elapídicos/farmacologia , Elapidae/metabolismo , Peptídeos/farmacologia , Receptores de GABA-A/metabolismo , Sequência de Aminoácidos , Animais , Venenos Elapídicos/química , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Masculino , Camundongos , Dados de Sequência Molecular , Mutação/genética , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptídeos/química , Ligação Proteica/efeitos dos fármacos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ratos , Receptores de GABA-A/química , Receptores de GABA-A/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Xenopus
2.
Biophys J ; 112(1): 99-108, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28076820

RESUMO

Ion conduction across the cellular membrane requires the simultaneous opening of activation and inactivation gates of the K+ channel pore. The bacterial KcsA channel has served as a powerful system for dissecting the structural changes that are related to four major functional states associated with K+ gating. Yet, the direct observation of the full gating cycle of KcsA has remained structurally elusive, and crystal structures mimicking these gating events require mutations in or stabilization of functionally relevant channel segments. Here, we found that changes in lipid composition strongly increased the KcsA open probability. This enabled us to probe all four major gating states in native-like membranes by combining electrophysiological and solid-state NMR experiments. In contrast to previous crystallographic views, we found that the selectivity filter and turret region, coupled to the surrounding bilayer, were actively involved in channel gating. The increase in overall steady-state open probability was accompanied by a reduction in activation-gate opening, underscoring the important role of the surrounding lipid bilayer in the delicate conformational coupling of the inactivation and activation gates.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ativação do Canal Iônico , Bicamadas Lipídicas/metabolismo , Canais de Potássio/química , Canais de Potássio/metabolismo , Cardiolipinas/metabolismo , Membrana Celular/metabolismo , Modelos Moleculares , Conformação Proteica
3.
Physiol Rev ; 90(2): 755-96, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20393197

RESUMO

Since the first discovery of Kvbeta-subunits more than 15 years ago, many more ancillary Kv channel subunits were characterized, for example, KChIPs, KCNEs, and BKbeta-subunits. The ancillary subunits are often integral parts of native Kv channels, which, therefore, are mostly multiprotein complexes composed of voltage-sensing and pore-forming Kvalpha-subunits and of ancillary or beta-subunits. Apparently, Kv channels need the ancillary subunits to fulfill their many different cell physiological roles. This is reflected by the large structural diversity observed with ancillary subunit structures. They range from proteins with transmembrane segments and extracellular domains to purely cytoplasmic proteins. Ancillary subunits modulate Kv channel gating but can also have a great impact on channel assembly, on channel trafficking to and from the cellular surface, and on targeting Kv channels to different cellular compartments. The importance of the role of accessory subunits is further emphasized by the number of mutations that are associated in both humans and animals with diseases like hypertension, epilepsy, arrhythmogenesis, periodic paralysis, and hypothyroidism. Interestingly, several ancillary subunits have in vitro enzymatic activity; for example, Kvbeta-subunits are oxidoreductases, or modulate enzymatic activity, i.e., KChIP3 modulates presenilin activity. Thus different modes of beta-subunit association and of functional impact on Kv channels can be delineated, making it difficult to extract common principles underlying Kvalpha- and beta-subunit interactions. We critically review present knowledge on the physiological role of ancillary Kv channel subunits and their effects on Kv channel properties.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Humanos , Mutação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Subunidades Proteicas
4.
J Cell Sci ; 127(Pt 18): 3943-55, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25037568

RESUMO

KCNQ1 and KCNE1 co-assembly generates the I(KS) K(+) current, which is crucial to the cardiac action potential repolarization. Mutations in their corresponding genes cause long QT syndrome (LQT) and atrial fibrillation. The A-kinase anchor protein, yotiao (also known as AKAP9), brings the I(KS) channel complex together with signaling proteins to achieve regulation upon ß1-adrenergic stimulation. Recently, we have shown that KCNQ1 helix C interacts with the KCNE1 distal C-terminus. We postulated that this interface is crucial for I(KS) channel modulation. Here, we examined the yet unknown molecular mechanisms of LQT mutations located at this intracellular intersubunit interface. All LQT mutations disrupted the internal KCNQ1-KCNE1 intersubunit interaction. LQT mutants in KCNQ1 helix C led to a decreased current density and a depolarizing shift of channel activation, mainly arising from impaired phosphatidylinositol-4,5-bisphosphate (PIP2) modulation. In the KCNE1 distal C-terminus, the LQT mutation P127T suppressed yotiao-dependent cAMP-mediated upregulation of the I(KS) current, which was caused by reduced KCNQ1 phosphorylation at S27. Thus, KCNQ1 helix C is important for channel modulation by PIP2, whereas the KCNE1 distal C-terminus appears essential for the regulation of IKS by yotiao-mediated PKA phosphorylation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/metabolismo , Síndrome do QT Longo/genética , Mutação de Sentido Incorreto , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Humanos , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/enzimologia , Síndrome do QT Longo/metabolismo , Fosforilação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Ligação Proteica , Estrutura Secundária de Proteína
5.
Proc Natl Acad Sci U S A ; 110(32): 13008-13, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23882077

RESUMO

Potassium (i.e., K(+)) channels allow for the controlled and selective passage of potassium ions across the plasma membrane via a conserved pore domain. In voltage-gated K(+) channels, gating is the result of the coordinated action of two coupled gates: an activation gate at the intracellular entrance of the pore and an inactivation gate at the selectivity filter. By using solid-state NMR structural studies, in combination with electrophysiological experiments and molecular dynamics simulations, we show that the turret region connecting the outer transmembrane helix (transmembrane helix 1) and the pore helix behind the selectivity filter contributes to K(+) channel inactivation and exhibits a remarkable structural plasticity that correlates to K(+) channel inactivation. The transmembrane helix 1 unwinds when the K(+) channel enters the inactivated state and rewinds during the transition to the closed state. In addition to well-characterized changes at the K(+) ion coordination sites, this process is accompanied by conformational changes within the turret region and the pore helix. Further spectroscopic and computational results show that the same channel domain is critically involved in establishing functional contacts between pore domain and the cellular membrane. Taken together, our results suggest that the interaction between the K(+) channel turret region and the lipid bilayer exerts an important influence on the selective passage of potassium ions via the K(+) channel pore.


Assuntos
Ativação do Canal Iônico/fisiologia , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Canais de Potássio/química , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Feminino , Ativação do Canal Iônico/genética , Canal de Potássio Kv1.3/química , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Bicamadas Lipídicas/metabolismo , Espectroscopia de Ressonância Magnética , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Oócitos/metabolismo , Oócitos/fisiologia , Canais de Potássio/genética , Canais de Potássio/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Xenopus
6.
J Neurosci ; 33(42): 16729-40, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24133274

RESUMO

We investigated the subthreshold properties of an erg (ether-à-go-go-related gene) K(+) current in Purkinje cells of neonatal mice. Action potentials recorded from Purkinje cells in cerebellar slices exhibited a decreased threshold potential and increased frequency of spontaneous and repetitive activity following application of the specific erg channel blocker E-4031. Accommodation was absent before and after drug application. The erg current of these Purkinje cells activated at membrane potentials near -60 mV and exhibited fast gating kinetics. The functional importance of fast gating subthreshold erg channels in Purkinje cells was corroborated by comparing the results of action potential clamp experiments with erg1a, erg1b, erg2, and erg3 currents heterologously expressed in HEK cells. Computer simulations based on a NEURON model of Purkinje cells only reproduced the effects of the native erg current when an erg channel conductance like that of erg3 was included. Experiments with subunit-sensitive toxins (BeKm-1, APETx1) indicated that erg channels in Purkinje cells are presumably mediated by heteromeric erg1/erg3 or modified erg1 channels. Following mGluR1 activation, the native erg current was reduced by ∼70%, brought about by reduction of the maximal erg current and a shift of the activation curve to more positive potentials. The Purkinje cell erg current contributed to the sustained current component of the biphasic mGluR1 response. Activation of mGluR1 by the agonist 3,4-dihydroxyphenylglycol increased Purkinje cell excitability, similar to that induced by E-4031. The results indicated that erg currents can be modulated and may contribute to the mGluR1-induced plasticity changes in Purkinje cells.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Potenciais da Membrana/fisiologia , Células de Purkinje/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Potenciais de Ação/fisiologia , Animais , Cerebelo/metabolismo , Venenos de Cnidários/farmacologia , Simulação por Computador , Agonistas de Aminoácidos Excitatórios/farmacologia , Células HEK293 , Humanos , Masculino , Camundongos , Modelos Neurológicos , Receptores de Glutamato Metabotrópico/agonistas , Venenos de Escorpião/farmacologia , Sesquiterpenos/farmacologia , Sesquiterpenos de Guaiano
7.
J Physiol ; 592(12): 2563-74, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24687584

RESUMO

The large conductance voltage- and Ca(2+)-activated K(+) (BK) channel is an important determinant of vascular tone and contributes to blood pressure regulation. Both activities depend on the ancillary BKß1 subunit. To determine the significance of smooth muscle BK channel activity for blood pressure regulation, we investigated the potential link between changes in arterial tone and altered blood pressure in BKß1 knockout (BKß1(-/-)) mice from three different genetically defined strains. While vascular tone was consistently increased in all BKß1(-/-) mice independent of genetic background, BKß1(-/-) strains exhibited increased (strain A), unaltered (strain B) or decreased (strain C) mean arterial blood pressures compared to their corresponding BKß1(+/+) controls. In agreement with previous data on aldosterone regulation by renal/adrenal BK channel function, BKß1(-/-) strain A mice have increased plasma aldosterone and increased blood pressure. Consistently, blockade of mineralocorticoid receptors by spironolactone treatment reversibly restored the elevated blood pressure to the BKß1(+/+) strain A level. In contrast, loss of BKß1 did not affect plasma aldosterone in strain C mice. Smooth muscle-restricted restoration of BKß1 expression increased blood pressure in BKß1(-/-) strain C mice, implying that impaired smooth muscle BK channel activity lowers blood pressure in these animals. We conclude that BK channel activity directly affects vascular tone but influences blood pressure independent of this effect via different pathways.


Assuntos
Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Músculo Liso/fisiologia , Aldosterona/sangue , Animais , Aorta Torácica/fisiologia , Pressão Sanguínea/fisiologia , Técnicas In Vitro , Rim/fisiologia , Camundongos Transgênicos , Células Musculares/fisiologia , Oócitos/fisiologia , Xenopus
8.
J Biomol NMR ; 60(2-3): 157-68, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25284462

RESUMO

Dynamic nuclear polarization (DNP) has become a powerful method to enhance spectroscopic sensitivity in the context of magnetic resonance imaging and nuclear magnetic resonance spectroscopy. We show that, compared to DNP at lower field (400 MHz/263 GHz), high field DNP (800 MHz/527 GHz) can significantly enhance spectral resolution and allows exploitation of the paramagnetic relaxation properties of DNP polarizing agents as direct structural probes under magic angle spinning conditions. Applied to a membrane-embedded K(+) channel, this approach allowed us to refine the membrane-embedded channel structure and revealed conformational substates that are present during two different stages of the channel gating cycle. High-field DNP thus offers atomic insight into the role of molecular plasticity during the course of biomolecular function in a complex cellular environment.


Assuntos
Proteínas de Bactérias/química , Campos Magnéticos , Ressonância Magnética Nuclear Biomolecular , Canais de Potássio/química , Isótopos de Carbono , Ativação do Canal Iônico , Solventes , Temperatura
9.
Proc Natl Acad Sci U S A ; 108(45): 18500-5, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22027011

RESUMO

Cardiac atrial natriuretic peptide (ANP) regulates arterial blood pressure, moderates cardiomyocyte growth, and stimulates angiogenesis and metabolism. ANP binds to the transmembrane guanylyl cyclase (GC) receptor, GC-A, to exert its diverse functions. This process involves a cGMP-dependent signaling pathway preventing pathological [Ca(2+)](i) increases in myocytes. In chronic cardiac hypertrophy, however, ANP levels are markedly increased and GC-A/cGMP responses to ANP are blunted due to receptor desensitization. Here we show that, in this situation, ANP binding to GC-A stimulates a unique cGMP-independent signaling pathway in cardiac myocytes, resulting in pathologically elevated intracellular Ca(2+) levels. This pathway involves the activation of Ca(2+)-permeable transient receptor potential canonical 3/6 (TRPC3/C6) cation channels by GC-A, which forms a stable complex with TRPC3/C6 channels. Our results indicate that the resulting cation influx activates voltage-dependent L-type Ca(2+) channels and ultimately increases myocyte Ca(2)(+)(i) levels. These observations reveal a dual role of the ANP/GC-A-signaling pathway in the regulation of cardiac myocyte Ca(2+)(i) homeostasis. Under physiological conditions, activation of a cGMP-dependent pathway moderates the Ca(2+)(i)-enhancing action of hypertrophic factors such as angiotensin II. By contrast, a cGMP-independent pathway predominates under pathophysiological conditions when GC-A is desensitized by high ANP levels. The concomitant rise in [Ca(2+)](i) might increase the propensity to cardiac hypertrophy and arrhythmias.


Assuntos
Fator Natriurético Atrial/metabolismo , GMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Miocárdio/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Humanos , Camundongos
10.
J Am Chem Soc ; 135(10): 3983-8, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23425320

RESUMO

We have investigated specific lipid binding to the pore domain of potassium channels KcsA and chimeric KcsA-Kv1.3 on the structural and functional level using extensive coarse-grained and atomistic molecular dynamics simulations, solid-state NMR, and single channel measurements. We show that, while KcsA activity is critically modulated by the specific and cooperative binding of anionic nonannular lipids close to the channel's selectivity filter, the influence of nonannular lipid binding on KcsA-Kv1.3 is much reduced. The diminished impact of specific lipid binding on KcsA-Kv1.3 results from a point-mutation at the corresponding nonannular lipid binding site leading to a salt-bridge between adjacent KcsA-Kv1.3 subunits, which is conserved in many voltage-gated potassium channels and prevents strong nonannular lipid binding to the pore domain. Our findings elucidate how protein-lipid and protein-protein interactions modulate K(+) channel activity. The combination of MD, NMR, and functional studies as shown here may help to dissect the structural and dynamical processes that are critical for the functioning of larger membrane proteins, including Kv channels in a membrane setting.


Assuntos
Proteínas de Bactérias/química , Canal de Potássio Kv1.3/química , Lipídeos/química , Canais de Potássio/química , Sítios de Ligação , Modelos Moleculares , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
11.
EMBO J ; 28(14): 1994-2005, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-19521339

RESUMO

Voltage-gated K(+) channels co-assemble with auxiliary beta subunits to form macromolecular complexes. In heart, assembly of Kv7.1 pore-forming subunits with KCNE1 beta subunits generates the repolarizing K(+) current I(KS). However, the detailed nature of their interface remains unknown. Mutations in either Kv7.1 or KCNE1 produce the life-threatening long or short QT syndromes. Here, we studied the interactions and voltage-dependent motions of I(KS) channel intracellular domains, using fluorescence resonance energy transfer combined with voltage-clamp recording and in vitro binding of purified proteins. The results indicate that the KCNE1 distal C-terminus interacts with the coiled-coil helix C of the Kv7.1 tetramerization domain. This association is important for I(KS) channel assembly rules as underscored by Kv7.1 current inhibition produced by a dominant-negative C-terminal domain. On channel opening, the C-termini of Kv7.1 and KCNE1 come close together. Co-expression of Kv7.1 with the KCNE1 long QT mutant D76N abolished the K(+) currents and gated motions. Thus, during channel gating KCNE1 is not static. Instead, the C-termini of both subunits experience molecular motions, which are disrupted by the D76N causing disease mutation.


Assuntos
Canal de Potássio KCNQ1/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Humanos , Imunoprecipitação , Canal de Potássio KCNQ1/química , Oócitos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Domínios e Motivos de Interação entre Proteínas , Xenopus
12.
EMBO J ; 28(18): 2825-34, 2009 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-19661921

RESUMO

Potassium (K(+))-channel gating is choreographed by a complex interplay between external stimuli, K(+) concentration and lipidic environment. We combined solid-state NMR and electrophysiological experiments on a chimeric KcsA-Kv1.3 channel to delineate K(+), pH and blocker effects on channel structure and function in a membrane setting. Our data show that pH-induced activation is correlated with protonation of glutamate residues at or near the activation gate. Moreover, K(+) and channel blockers distinctly affect the open probability of both the inactivation gate comprising the selectivity filter of the channel and the activation gate. The results indicate that the two gates are coupled and that effects of the permeant K(+) ion on the inactivation gate modulate activation-gate opening. Our data suggest a mechanism for controlling coordinated and sequential opening and closing of activation and inactivation gates in the K(+)-channel pore.


Assuntos
Canais de Potássio/metabolismo , Animais , Bactérias/metabolismo , Membrana Celular/metabolismo , Eletrofisiologia , Ácido Glutâmico/química , Concentração de Íons de Hidrogênio , Íons , Ligantes , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Biológicos , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química
13.
bioRxiv ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36712037

RESUMO

The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for thef ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing proper localization to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.

14.
Biophys J ; 103(1): 29-37, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22828329

RESUMO

Elemental biological functions such as molecular signal transduction are determined by the dynamic interplay between polypeptides and the membrane environment. Determining such supramolecular arrangements poses a significant challenge for classical structural biology methods. We introduce an iterative approach that combines magic-angle spinning solid-state NMR spectroscopy and atomistic molecular dynamics simulations for the determination of the structure and topology of membrane-bound systems with a resolution and level of accuracy difficult to obtain by either method alone. Our study focuses on the Shaker B ball peptide that is representative for rapid N-type inactivating domains of voltage-gated K(+) channels, associated with negatively charged lipid bilayers.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/química , Sequência de Aminoácidos , Animais , Peptídeos e Proteínas de Sinalização Intracelular , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química
15.
Nature ; 440(7086): 959-62, 2006 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-16612389

RESUMO

The active site of potassium (K+) channels catalyses the transport of K+ ions across the plasma membrane--similar to the catalytic function of the active site of an enzyme--and is inhibited by toxins from scorpion venom. On the basis of the conserved structures of K+ pore regions and scorpion toxins, detailed structures for the K+ channel-scorpion toxin binding interface have been proposed. In these models and in previous solution-state nuclear magnetic resonance (NMR) studies using detergent-solubilized membrane proteins, scorpion toxins were docked to the extracellular entrance of the K+ channel pore assuming rigid, preformed binding sites. Using high-resolution solid-state NMR spectroscopy, here we show that high-affinity binding of the scorpion toxin kaliotoxin to a chimaeric K+ channel (KcsA-Kv1.3) is associated with significant structural rearrangements in both molecules. Our approach involves a combined analysis of chemical shifts and proton-proton distances and demonstrates that solid-state NMR is a sensitive method for analysing the structure of a membrane protein-inhibitor complex. We propose that structural flexibility of the K+ channel and the toxin represents an important determinant for the high specificity of toxin-K+ channel interactions.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Canais de Potássio/química , Canais de Potássio/efeitos dos fármacos , Venenos de Escorpião/farmacologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Canal de Potássio Kv1.3/química , Canal de Potássio Kv1.3/efeitos dos fármacos , Canal de Potássio Kv1.3/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Oócitos/metabolismo , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Conformação Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Venenos de Escorpião/química , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo , Escorpiões , Xenopus
16.
Biochim Biophys Acta ; 1798(2): 286-90, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19595989

RESUMO

We report longitudinal (15)N relaxation rates derived from two-dimensional ((15)N, (13)C) chemical shift correlation experiments obtained under magic angle spinning for the potassium channel KcsA-Kv1.3 reconstituted in multilamellar vesicles. Thus, we demonstrate that solid-state NMR can be used to probe residue-specific backbone dynamics in a membrane-embedded protein. Enhanced backbone mobility was detected for two glycine residues within the selectivity filter that are highly conserved in potassium channels and that are of core relevance to the filter structure and ion selectivity.


Assuntos
Proteínas de Bactérias/química , Membrana Celular/química , Ressonância Magnética Nuclear Biomolecular , Canais de Potássio/química , Estrutura Terciária de Proteína/fisiologia
17.
Basic Res Cardiol ; 105(5): 583-95, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20352235

RESUMO

Cardiac atrial natriuretic peptide (ANP) locally counteracts cardiac hypertrophy via the guanylyl cyclase-A (GC-A) receptor and cGMP production, but the downstream signalling pathways are unknown. Here, we examined the influence of ANP on beta-adrenergic versus Angiotensin II (Ang II)-dependent (G(s) vs. G(alphaq) mediated) modulation of Ca(2+) (i)-handling in cardiomyocytes and of hypertrophy in intact hearts. L-type Ca(2+) currents and Ca(2+) (i) transients in adult isolated murine ventricular myocytes were studied by voltage-clamp recordings and fluorescence microscopy. ANP suppressed Ang II-stimulated Ca(2+) currents and transients, but had no effect on isoproterenol stimulation. Ang II suppression by ANP was abolished in cardiomyocytes of mice deficient in GC-A, in cyclic GMP-dependent protein kinase I (PKG I) or in the regulator of G protein signalling (RGS) 2, a target of PKG I. Cardiac hypertrophy in response to exogenous Ang II was significantly exacerbated in mice with conditional, cardiomyocyte-restricted GC-A deletion (CM GC-A KO). This was concomitant to increased activation of the Ca(2+)/calmodulin-dependent prohypertrophic signal transducer CaMKII. In contrast, beta-adrenoreceptor-induced hypertrophy was not enhanced in CM GC-A KO mice. Lastly, while the stimulatory effects of Ang II on Ca(2+)-handling were absent in myocytes of mice deficient in TRPC3/TRPC6, the effects of isoproterenol were unchanged. Our data demonstrate a direct myocardial role for ANP/GC-A/cGMP to antagonize the Ca(2+) (i)-dependent hypertrophic growth response to Ang II, but not to beta-adrenergic stimulation. The selectivity of this interaction is determined by PKG I and RGS2-dependent modulation of Ang II/AT(1) signalling. Furthermore, they strengthen published observations in neonatal cardiomyocytes showing that TRPC3/TRPC6 channels are essential for Ang II, but not for beta-adrenergic Ca(2+) (i)-stimulation in adult myocytes.


Assuntos
Fator Natriurético Atrial/metabolismo , Cardiomegalia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas RGS/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Angiotensina II/farmacologia , Animais , Cálcio/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Linhagem Celular , Proteínas Quinases Dependentes de GMP Cíclico/genética , Humanos , Isoproterenol/farmacologia , Rim/citologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6 , Vasoconstritores/farmacologia
18.
Curr Opin Pharmacol ; 9(3): 311-5, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19394895

RESUMO

Voltage-gated potassium (Kv) channels play an important role in regulating cardiac muscle excitability by controlling action potential duration and frequency. Essential for this activity is proper localization and organization of the cardiac Kv channels in specific microdomains of the plasma membrane. The underlying processes involve tight control of anterograde and retrograde Kv channel trafficking into and out of the plasma membrane. Thus, cardiac Kv channel density at the cell surface is regulated by a dynamic interplay of endocytotic and recycling pathways, the mechanisms of which are mostly unknown. Recent studies have indicated that the lipid composition in the Kv channel surround profoundly influences these processes. Local differences in lipid composition altering the mechanic state of the lipid bilayer or a specific interaction with an important domain of the Kv channel markedly affect voltage-sensitive gating, clustering, and mobility of cardiac Kv channels and, thereby, the excitability in the healthy and diseased heart muscles.


Assuntos
Endocitose , Miocárdio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Membrana Celular/metabolismo , Humanos , Lipídeos/química , Miócitos Cardíacos/metabolismo , Transporte Proteico
19.
Structure ; 16(5): 747-54, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18462679

RESUMO

Recently, a solid-state NMR study revealed that scorpion toxin binding leads to conformational changes in the selectivity filter of potassium channels. The exact nature of the conformational changes, however, remained elusive. We carried out all-atom molecular dynamics simulations that enabled us to cover the complete pathway of toxin approach and binding, and we validated our simulation results by using solid-state NMR data and electrophysiological measurements. Our structural model revealed a mechanism of cooperative toxin-induced conformational changes that accounts both for the signal changes observed in solid-state NMR and for the tight interaction between KcsA-Kv1.3 and Kaliotoxin. We show that this mechanism is structurally and functionally closely related to recovery from C-type inactivation. Furthermore, our simulations indicate heterogeneity in the binding modes of Kaliotoxin, which might serve to enhance its affinity for KcsA-Kv1.3 further by entropic stabilization.


Assuntos
Canal de Potássio Kv1.3/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Venenos de Escorpião/metabolismo , Animais , Simulação por Computador , Eletrofisiologia , Feminino , Canal de Potássio Kv1.3/química , Canal de Potássio Kv1.3/genética , Microinjeções , Modelos Moleculares , Conformação Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Oócitos/metabolismo , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Estrutura Secundária de Proteína , RNA Complementar/administração & dosagem , Venenos de Escorpião/química , Escorpiões , Eletricidade Estática , Xenopus
20.
Nat Neurosci ; 8(1): 51-60, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15608631

RESUMO

In humans, mutations in the KCNQ2 or KCNQ3 potassium-channel genes are associated with an inherited epilepsy syndrome. We have studied the contribution of KCNQ/M-channels to the control of neuronal excitability by using transgenic mice that conditionally express dominant-negative KCNQ2 subunits in brain. We show that suppression of the neuronal M current in mice is associated with spontaneous seizures, behavioral hyperactivity and morphological changes in the hippocampus. Restriction of transgene expression to defined developmental periods revealed that M-channel activity is critical to the development of normal hippocampal morphology during the first postnatal weeks. Suppression of the M current after this critical period resulted in mice with signs of increased neuronal excitability and deficits in hippocampus-dependent spatial memory. M-current-deficient hippocampal CA1 pyramidal neurons showed increased excitability, reduced spike-frequency adaptation, attenuated medium afterhyperpolarization and reduced intrinsic subthreshold theta resonance. M channels are thus critical determinants of cellular and neuronal network excitability, postnatal brain development and cognitive performance.


Assuntos
Comportamento Animal , Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Fenômenos Biofísicos , Biofísica , Encéfalo/metabolismo , Encéfalo/patologia , Eletrofisiologia , Epilepsia/genética , Epilepsia/patologia , Epilepsia/psicologia , Feminino , Genes Dominantes , Hipercinese/genética , Canal de Potássio KCNQ2 , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Oócitos , Fenótipo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/deficiência , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Células Piramidais , Natação , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa