Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995242

RESUMO

Diffusive motion accompanies many physical and biological processes. The Stokes-Sutherland-Einstein relation for the translational diffusion coefficient, DT, agrees with experiments done in simple fluids but fails for complex fluids. Moreover, the interdependence between DT and rotational diffusion coefficient, DR, also deviates in complex fluids from the classical relation of DT/DR = 4r2/3 known in simple fluids. Makuch et al. Soft Matter, 2020, 16, 114-124 presented a generalization of the classical translational and rotational diffusion theory for complex fluids. In this work, we empirically verify this model based on simultaneous translational and rotational diffusion measurements. We use fluorescently stained cowpea chlorotic mottle virus (CCMV) particles as monodisperse probes and aqueous polyethylene glycol (PEG) solutions as a model complex fluid. The theory and experimental data obtained from fluorescence correlation spectroscopy (FCS) measurements agreed. Finally, we used the same model and analyzed the diffusion of Yo-Pro-1 stained large ribosomal subunits (LSU) in the cytoplasm and nucleus of living HeLa cells.

2.
Phys Chem Chem Phys ; 21(3): 1572-1577, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30620015

RESUMO

Quantitative description of the interaction between doxorubicin (DOX), a broadly used anticancer drug, and DNA is the key to understand the action mechanism and side effects of its clinical use. However, the reported equilibrium constants of DOX-DNA interaction obtained using a range of different analytical methods vary even by several orders of magnitude. Herein, we propose a novel application of a single-molecule technique - fluorescence correlation spectroscopy (FCS) - to probe the interaction between DOX and two types of DNA (pUC19 and calf thymus DNA), taking advantage of intrinsic self-fluorescence of DOX. We provide an analytical formula for autocorrelation analysis to determine the equilibrium constant of DOX-DNA complex-formation, where binding of multiple DOX molecules to a DNA chain is included in the reaction-diffusion model. Our FCS-based method not only quantitatively revealed the values of equilibrium constant, but also implied that the stability of DOX-DNA complex is related to the types of base pair rather than the length or structure of the DNA. This work opens a promising pathway toward quantitative determination of molecular interactions in complex systems such as living cells or organisms at single-molecule level.


Assuntos
Adutos de DNA/química , DNA/química , Doxorrubicina/química , Substâncias Intercalantes/química , Plasmídeos/química , Animais , Antibióticos Antineoplásicos/química , Pareamento de Bases , Sítios de Ligação , Fenômenos Bioquímicos , Bovinos , Escherichia coli/genética , Fluorescência , Espectrometria de Fluorescência/métodos
3.
Soft Matter ; 13(6): 1267-1275, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28106203

RESUMO

Fluorescence correlation spectroscopy (FCS) can provide information about diffusion coefficients and rate constants of chemical reactions in small systems of interacting molecules. However, the interpretation of FCS experiments depends crucially on the model of the autocorrelation function for the fluorescence intensity fluctuations. In this theoretical work, we consider a system of fluorescent molecules that diffuse and interact with massive particles, e.g. surfactant micelles. Using the general formalism of FCS, we derive a new analytical approximation of the autocorrelation function for systems in which both diffusion and a binary reaction occur. This approximation provides a smooth interpolation between the limit of fast reaction (much faster than diffusion), and the opposite limit of slow reaction. Our studies of noncovalent interactions of micelles with dyes by FCS provided an experimental case to which the approximate autocorrelation function was successfully applied [X. Zhang, A. Poniewierski, A. Jelinska, A. Zagozdzon, A. Wisniewska, S. Hou and R. Holyst, Soft Matter, 2016, 12, 8186-8194].

4.
Soft Matter ; 12(39): 8186-8194, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27714379

RESUMO

The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C12E8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.

5.
Soft Matter ; 11(12): 2512-8, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25682837

RESUMO

The structural dynamics of proteins is crucial to their biological functions. A precise and convenient method to determine the structural changes of a protein is still urgently needed. Herein, we employ fluorescence correlation spectroscopy (FCS) to track the structural transition of bovine serum albumin (BSA) in low concentrated cationic (cetyltrimethylammonium chloride, CTAC), anionic (sodium dodecyl sulfate, SDS), and nonionic (pentaethylene glycol monododecyl ether, C12E5 and octaethylene glycol monododecyl ether, C12E8) surfactant solutions. BSA is labelled with the fluorescence dye called ATTO-488 (ATTO-BSA) to obtain steady fluorescence signals for measurements. We find that the diffusion coefficient of BSA decreases abruptly with the surfactant concentration in ionic surfactant solutions at concentrations below the critical micelle concentration (CMC), while it is constant in nonionic surfactant solutions. According to the Stokes-Sutherland-Einstein equation, the hydrodynamic radius of BSA in ionic surfactant solutions amounts to ∼6.5 nm, which is 1.7 times larger than in pure water or in nonionic surfactant solutions (3.9 nm). The interaction between BSA and ionic surfactant monomers is believed to cause the structural transition of BSA. We confirm this proposal by observing a sudden shift of the fluorescence lifetime of ATTO-BSA, from 2.3 ns to ∼3.0 ns, in ionic surfactant solutions at the concentration below CMC. No change in the fluorescence lifetime is detected in nonionic surfactant solutions. Moreover, by using FCS we are also able to identify whether the structural change of protein results from its self-aggregation or unfolding.


Assuntos
Soroalbumina Bovina/química , Tensoativos/química , Animais , Bovinos , Fluorescência , Conformação Proteica , Dodecilsulfato de Sódio/química , Espectrometria de Fluorescência
6.
J Chem Theory Comput ; 20(7): 2830-2841, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38518174

RESUMO

Fluorescence correlation spectroscopy (FCS) applied to chemically reactive systems provides information about chemical reaction equilibrium constants and diffusion coefficients of reactants. These physical quantities are determined from the FCS-measured autocorrelation function, G(t), as a function of time, t. In most of the studied cases, the analytical form of G(t) is well-known for reactions that are much faster than the diffusion time of reactants across the focal volume probed by FCS or when they are much slower than the diffusion time. Here, we develop an analytical form of G(t) for reactions occurring at an intermediate time scale comparable to the diffusion time. G(t) depends on the reaction rates in such reactions. We focus on reversibly binding a fluorescently labeled small molecule to a macromolecule in a diluted solution in thermodynamic equilibrium. Our approach allows the analysis of FCS data over a wide range of diffusion coefficients, reaction rate constants, and brightness levels of fluorescent labels. Our G(t) is valid even when the fluorescent label changes its brightness upon binding. The easy-to-implement analytical form of the autocorrelation function greatly helps experimentalists study chemical reactions, determining the equilibrium constants of reactions and the reaction rates.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa