Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Semin Thromb Hemost ; 50(4): 638-647, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38395065

RESUMO

Acute liver injury (ALI), that is, the development of reduced liver function in patients without preexisting liver disease, can result from a wide range of causes, such as viral or bacterial infection, autoimmune disease, or adverse reaction to prescription and over-the-counter medications. ALI patients present with a complex coagulopathy, characterized by both hypercoagulable and hypocoagulable features. Similarly, ALI patients display a profound dysregulation of the fibrinolytic system with the vast majority of patients presenting with a hypofibrinolytic phenotype. Decades of research in experimental acute liver injury in mice suggest that fibrinolytic proteins, including plasmin(ogen), plasminogen activators, fibrinolysis inhibitors, and fibrin(ogen), can contribute to initial hepatotoxicity and/or stimulate liver repair. This review summarizes major experimental findings regarding the role of fibrinolytic factors in ALI from the last approximately 30 years and identifies unanswered questions, as well as highlighting areas for future research.


Assuntos
Fibrinólise , Humanos , Fibrinólise/fisiologia , Animais , Camundongos
2.
Blood ; 139(9): 1374-1388, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34905618

RESUMO

Genetic variants within the fibrinogen Aα chain encoding the αC-region commonly result in hypodysfibrinogenemia in patients. However, the (patho)physiological consequences and underlying mechanisms of such mutations remain undefined. Here, we generated Fga270 mice carrying a premature termination codon within the Fga gene at residue 271. The Fga270 mutation was compatible with Mendelian inheritance for offspring of heterozygous crosses. Adult Fga270/270 mice were hypofibrinogenemic with ∼10% plasma fibrinogen levels relative to FgaWT/WT mice, linked to 90% reduction in hepatic Fga messenger RNA (mRNA) because of nonsense-mediated decay of the mutant mRNA. Fga270/270 mice had preserved hemostatic potential in vitro and in vivo in models of tail bleeding and laser-induced saphenous vein injury, whereas Fga-/- mice had continuous bleeding. Platelets from FgaWT/WT and Fga270/270 mice displayed comparable initial aggregation following adenosine 5'-diphosphate stimulation, but Fga270/270 platelets quickly disaggregated. Despite ∼10% plasma fibrinogen, the fibrinogen level in Fga270/270 platelets was ∼30% of FgaWT/WT platelets with a compensatory increase in fibronectin. Notably, Fga270/270 mice showed complete protection from thrombosis in the inferior vena cava stasis model. In a model of Staphylococcus aureus peritonitis, Fga270/270 mice supported local, fibrinogen-mediated bacterial clearance and host survival comparable to FgaWT/WT, unlike Fga-/- mice. Decreasing the normal fibrinogen levels to ∼10% with small interfering RNA in mice also provided significant protection from venous thrombosis without compromising hemostatic potential and antimicrobial function. These findings both reveal novel molecular mechanisms underpinning fibrinogen αC-region truncation mutations and highlight the concept that selective fibrinogen reduction may be efficacious for limiting thrombosis while preserving hemostatic and immune protective functions.


Assuntos
Afibrinogenemia , Plaquetas/metabolismo , Fibrinogênio , Hemostasia/genética , Mutação , Agregação Plaquetária/genética , Trombose , Afibrinogenemia/genética , Afibrinogenemia/metabolismo , Animais , Fibrinogênio/genética , Fibrinogênio/metabolismo , Camundongos , Camundongos Knockout , Trombose/genética , Trombose/metabolismo
3.
Blood ; 137(18): 2520-2531, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33569603

RESUMO

Intravascular fibrin clot formation follows a well-ordered series of reactions catalyzed by thrombin cleavage of fibrinogen leading to fibrin polymerization and cross-linking by factor XIIIa (FXIIIa). Extravascular fibrin(ogen) deposits are observed in injured tissues; however, the mechanisms regulating fibrin(ogen) polymerization and cross-linking in this setting are unclear. The objective of this study was to determine the mechanisms of fibrin polymerization and cross-linking in acute liver injury induced by acetaminophen (APAP) overdose. Hepatic fibrin(ogen) deposition and cross-linking were measured following APAP overdose in wild-type mice, mice lacking the catalytic subunit of FXIII (FXIII-/-), and in FibAEK mice, which express mutant fibrinogen insensitive to thrombin-mediated fibrin polymer formation. Hepatic fibrin(ogen) deposition was similar in APAP-challenged wild-type and FXIII-/- mice, yet cross-linking of hepatic fibrin(ogen) was dramatically reduced (>90%) by FXIII deficiency. Surprisingly, hepatic fibrin(ogen) deposition and cross-linking were only modestly reduced in APAP-challenged FibAEK mice, suggesting that in the APAP-injured liver fibrin polymerization is not strictly required for the extravascular deposition of cross-linked fibrin(ogen). We hypothesized that the oxidative environment in the injured liver, containing high levels of reactive mediators (eg, peroxynitrite), modifies fibrin(ogen) such that fibrin polymerization is impaired without impacting FXIII-mediated cross-linking. Notably, fibrin(ogen) modified with 3-nitrotyrosine adducts was identified in the APAP-injured liver. In biochemical assays, peroxynitrite inhibited thrombin-mediated fibrin polymerization in a concentration-dependent manner without affecting fibrin(ogen) cross-linking over time. These studies depict a unique pathology wherein thrombin-catalyzed fibrin polymerization is circumvented to allow tissue deposition and FXIII-dependent fibrin(ogen) cross-linking.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Fator XIII/fisiologia , Fibrina/metabolismo , Fibrinogênio/metabolismo , Polimerização , Trombina/metabolismo , Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Animais , Coagulação Sanguínea , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fibrina/química , Fibrinogênio/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Mol Pharm ; 19(7): 2175-2182, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35642083

RESUMO

Ionizable cationic lipids are essential for efficient in vivo delivery of RNA by lipid nanoparticles (LNPs). DLin-MC3-DMA (MC3), ALC-0315, and SM-102 are the only ionizable cationic lipids currently clinically approved for RNA therapies. ALC-0315 and SM-102 are structurally similar lipids used in SARS-CoV-2 mRNA vaccines, while MC3 is used in siRNA therapy to knock down transthyretin in hepatocytes. Hepatocytes and hepatic stellate cells (HSCs) are particularly attractive targets for RNA therapy because they synthesize many plasma proteins, including those that influence blood coagulation. While LNPs preferentially accumulate in the liver, evaluating the ability of different ionizable cationic lipids to deliver RNA cargo into distinct cell populations is important for designing RNA-LNP therapies with minimal hepatotoxicity. Here, we directly compared LNPs containing either ALC-0315 or MC3 to knock-down coagulation factor VII (FVII) in hepatocytes and ADAMTS13 in HSCs. At a dose of 1 mg/kg siRNA in mice, LNPs with ALC-0315 achieved a 2- and 10-fold greater knockdown of FVII and ADAMTS13, respectively, compared to LNPs with MC3. At a high dose (5 mg/kg), ALC-0315 LNPs increased markers of liver toxicity (ALT and bile acids), while the same dose of MC3 LNPs did not. These results demonstrate that ALC-0315 LNPs achieves potent siRNA-mediated knockdown of target proteins in hepatocytes and HSCs, in mice, though markers of liver toxicity can be observed after a high dose. This study provides an initial comparison that may inform the development of ionizable cationic LNP therapeutics with maximal efficacy and limited toxicity.


Assuntos
COVID-19 , Nanopartículas , Amino Álcoois , Animais , Caprilatos , Cátions/metabolismo , Decanoatos , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Lipídeos , Lipossomos , Camundongos , RNA Interferente Pequeno , SARS-CoV-2
5.
Arterioscler Thromb Vasc Biol ; 39(10): 2038-2048, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31412737

RESUMO

OBJECTIVE: Regulation of TF (tissue factor):FVIIa (coagulation factor VIIa) complex procoagulant activity is especially critical in tissues where plasma can contact TF-expressing cells. One example is the liver, where hepatocytes are routinely exposed to plasma because of the fenestrated sinusoidal endothelium. Although liver-associated TF contributes to coagulation, the mechanisms controlling the TF:FVIIa complex activity in this tissue are not known. Approach and Results: Common bile duct ligation in mice triggered rapid hepatocyte TF-dependent intrahepatic coagulation coincident with increased plasma bile acids, which occurred at a time before observable liver damage. Similarly, plasma TAT (thrombin-antithrombin) levels increased in cholestatic patients without concurrent hepatocellular injury. Pathologically relevant concentrations of the bile acid glycochenodeoxycholic acid rapidly increased hepatocyte TF-dependent procoagulant activity in vitro, independent of de novo TF synthesis and necrotic or apoptotic cell death. Glycochenodeoxycholic acid increased hepatocyte TF activity even in the presence of the phosphatidylserine-blocking protein lactadherin. Interestingly, glycochenodeoxycholic acid and taurochenodeoxycholic acid increased the procoagulant activity of the TF:FVIIa complex relipidated in unilamellar phosphatidylcholine vesicles, which was linked to an apparent decrease in the Km for FX (coagulation factor X). Notably, the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, a bile acid structural analog, did not increase relipidated TF:FVIIa activity. Bile acids directly enhanced factor X activation by recombinant soluble TF:FVIIa complex but had no effect on FVIIa alone. CONCLUSIONS: The results indicate that bile acids directly accelerate TF:FVIIa-driven coagulation reactions, suggesting a novel mechanism whereby elevation in a physiological mediator can directly increase TF:FVIIa procoagulant activity.


Assuntos
Ductos Biliares/cirurgia , Colestase Intra-Hepática/metabolismo , Colestase Intra-Hepática/fisiopatologia , Fator VIIa/metabolismo , Fator X/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Coagulação Sanguínea/fisiologia , Transtornos da Coagulação Sanguínea/fisiopatologia , Testes de Coagulação Sanguínea , Células Cultivadas , Modelos Animais de Doenças , Hepatócitos/metabolismo , Humanos , Cinética , Ligadura/métodos , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilserinas/metabolismo , Distribuição Aleatória
6.
Hepatology ; 65(3): 969-982, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28035785

RESUMO

The extracellular matrix (ECM) consists of diverse components that work bidirectionally with surrounding cells to create a responsive microenvironment. In some contexts (e.g., hepatic fibrosis), changes to the ECM are well recognized and understood. However, it is becoming increasingly accepted that the hepatic ECM proteome (i.e., matrisome) responds dynamically to stress well before fibrosis. The term "transitional tissue remodeling" describes qualitative and quantitative ECM changes in response to injury that do not alter the overall architecture of the organ; these changes in ECM may contribute to early disease initiation and/or progression. The nature and magnitude of these changes to the ECM in liver injury are poorly understood. The goals of this work were to validate analysis of the ECM proteome and compare the impact of 6 weeks of ethanol diet and/or acute lipopolysaccharide (LPS). Liver sections were processed in a series of increasingly rigorous extraction buffers to separate proteins by solubility. Extracted proteins were identified using liquid chromatography/tandem mass spectrometry (LC-MS/MS). Both ethanol and LPS dramatically increased the number of matrisome proteins ∼25%. The enhancement of LPS-induced liver damage by ethanol preexposure was associated with unique protein changes. CONCLUSION: An extraction method to enrich the hepatic ECM was characterized. The results demonstrate that the hepatic matrisome responds dynamically to both acute (LPS) and chronic (ethanol) stresses, long before more-dramatic fibrotic changes to the liver occur. The changes to the mastrisome may contribute, at least in part, to the pathological responses to these stresses. It is also interesting that several ECM proteins responded similarly to both stresses, suggesting a common mechanism in both models. Nevertheless, there were responses that were unique to the individual and combined exposures. (Hepatology 2017;65:969-982).


Assuntos
Etanol/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Lipopolissacarídeos/farmacologia , Cirrose Hepática/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/efeitos dos fármacos , Cirrose Hepática/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Proteoma/genética , Distribuição Aleatória , Fatores de Risco , Sensibilidade e Especificidade
7.
Am J Respir Cell Mol Biol ; 57(3): 315-323, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28445073

RESUMO

Chronic alcohol exposure is a clinically important risk factor for the development of acute respiratory distress syndrome, the most severe form of acute lung injury (ALI). However, the mechanisms by which alcohol sensitizes the lung to development of this disease are poorly understood. We determined the role of the antifibrinolytic protein plasminogen activator inhibitor-1 (PAI-1) in alcohol enhancement of experimental endotoxin-induced ALI. Wild-type, PAI-1-/-, and integrin ß3-/- mice were fed ethanol-containing Lieber-DeCarli liquid or a control diet for 6 weeks, followed by systemic LPS challenge. LPS administration triggered coagulation cascade activation as evidenced by increased plasma thrombin-antithrombin levels and pulmonary fibrin deposition. Ethanol-exposed animals showed enhanced PAI-1 expression and pulmonary fibrin deposition with coincident exaggeration of pulmonary inflammatory edematous injury. PAI-1 deficiency markedly reduced pulmonary fibrin deposition and greatly reduced inflammation and injury without impacting upstream coagulation. Interestingly, pulmonary platelet accumulation was effectively abolished by PAI-1 deficiency in ethanol/LPS-challenged mice. Moreover, mice lacking integrin αIIBß3, the primary platelet receptor for fibrinogen, displayed a dramatic reduction in early inflammatory changes after ethanol/LPS challenge. These results indicate that the mechanism whereby alcohol exaggerates LPS-induced lung injury requires PAI-1-mediated pulmonary fibrin accumulation, and suggest a novel mechanism whereby alcohol contributes to inflammatory ALI by enhancing fibrinogen-platelet engagement.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Etanol/efeitos adversos , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/prevenção & controle , Animais , Plaquetas/metabolismo , Fibrina/metabolismo , Transtornos Hemorrágicos/complicações , Transtornos Hemorrágicos/patologia , Integrina beta3/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Inibidor 1 de Ativador de Plasminogênio/deficiência , Edema Pulmonar/complicações , Edema Pulmonar/patologia , Edema Pulmonar/prevenção & controle
8.
Proc Natl Acad Sci U S A ; 110(51): E4987-96, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24277811

RESUMO

The source and dynamics of persistent HIV-1 during long-term combinational antiretroviral therapy (cART) are critical to understanding the barriers to curing HIV-1 infection. To address this issue, we isolated and genetically characterized HIV-1 DNA from naïve and memory T cells from peripheral blood and gut-associated lymphoid tissue (GALT) from eight patients after 4-12 y of suppressive cART. Our detailed analysis of these eight patients indicates that persistent HIV-1 in peripheral blood and GALT is found primarily in memory CD4(+) T cells [CD45RO(+)/CD27((+/-))]. The HIV-1 infection frequency of CD4(+) T cells from peripheral blood and GALT was higher in patients who initiated treatment during chronic compared with acute/early infection, indicating that early initiation of therapy results in lower HIV-1 reservoir size in blood and gut. Phylogenetic analysis revealed an HIV-1 genetic change between RNA sequences isolated before initiation of cART and intracellular HIV-1 sequences from the T-cell subsets after 4-12 y of suppressive cART in four of the eight patients. However, evolutionary rate analyses estimated no greater than three nucleotide substitutions per gene region analyzed during all of the 4-12 y of suppressive therapy. We also identified a clearly replication-incompetent viral sequence in multiple memory T cells in one patient, strongly supporting asynchronous cell replication of a cell containing integrated HIV-1 DNA as the source. This study indicates that persistence of a remarkably stable population of infected memory cells will be the primary barrier to a cure, and, with little evidence of viral replication, this population could be maintained by homeostatic cell proliferation or other processes.


Assuntos
Antirretrovirais/administração & dosagem , Linfócitos T CD4-Positivos , Portador Sadio/virologia , DNA Viral , Infecções por HIV , HIV-1 , Tecido Linfoide , Mutação , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , DNA Viral/genética , DNA Viral/metabolismo , Feminino , Genoma Viral/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/patologia , HIV-1/genética , HIV-1/metabolismo , Humanos , Memória Imunológica , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , Tecido Linfoide/virologia , Masculino , Filogenia , Fatores de Tempo
9.
J Infect Dis ; 212(4): 596-607, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25712966

RESUMO

BACKGROUND: The stability of the human immunodeficiency virus type 1 (HIV-1) reservoir and the contribution of cellular proliferation to the maintenance of the reservoir during treatment are uncertain. Therefore, we conducted a longitudinal analysis of HIV-1 in T-cell subsets in different tissue compartments from subjects receiving effective antiretroviral therapy (ART). METHODS: Using single-proviral sequencing, we isolated intracellular HIV-1 genomes derived from defined subsets of CD4(+) T cells from peripheral blood, gut-associated lymphoid tissue and lymph node tissue specimens from 8 subjects with virologic suppression during long-term ART at 2 time points (time points 1 and 2) separated by 7-9 months. RESULTS: DNA integrant frequencies were stable over time (<4-fold difference) and highest in memory T cells. Phylogenetic analyses showed that subjects treated during chronic infection contained viral populations with up to 73% identical sequence expansions, only 3 of which were observed in specimens obtained before therapy. At time points 1 and 2, such clonally expanded populations were found predominantly in effector memory T cells from peripheral blood and lymph node tissue specimens. CONCLUSIONS: Memory T cells maintained a relatively constant HIV-1 DNA integrant pool that was genetically stable during long-term effective ART. These integrants appear to be maintained by cellular proliferation and longevity of infected cells, rather than by ongoing viral replication.


Assuntos
Fármacos Anti-HIV/uso terapêutico , DNA Viral/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/genética , Subpopulações de Linfócitos T/virologia , Proliferação de Células , DNA Viral/isolamento & purificação , Humanos , Estudos Longitudinais , Linfonodos/virologia , Filogenia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/fisiologia
10.
Alcohol Clin Exp Res ; 39(10): 1978-88, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26380957

RESUMO

BACKGROUND: It is well known that liver and lung injury can occur simultaneously during severe inflammation (e.g., multiple organ failure). However, whether these are parallel or interdependent (i.e., liver-lung axis) mechanisms is unclear. Previous studies have shown that chronic ethanol (EtOH) consumption greatly increases mortality in the setting of sepsis-induced acute lung injury (ALI). The potential contribution of subclinical liver disease in driving this effect of EtOH on the lung remains unknown. Therefore, the purpose of this study was to characterize the impact of chronic EtOH exposure on concomitant liver and lung injury. METHODS: Male mice were exposed to EtOH-containing Lieber-DeCarli diet or pair-fed control diet for 6 weeks. Some animals were administered lipopolysaccharide (LPS) 4 or 24 hours prior to sacrifice to mimic sepsis-induced ALI. Some animals received the tumor necrosis factor-alpha (TNF-α)-blocking drug, etanercept, for the duration of alcohol exposure. The expression of cytokine mRNA in lung and liver tissue was determined by quantitative PCR. Cytokine levels in the bronchoalveolar lavage fluid and plasma were determined by Luminex assay. RESULTS: As expected, the combination of EtOH and LPS caused liver injury, as indicated by significantly increased levels of the transaminases alanine aminotransferase/aspartate aminotransferase in the plasma and by changes in liver histology. In the lung, EtOH preexposure enhanced pulmonary inflammation and alveolar hemorrhage caused by LPS. These changes corresponded with unique alterations in the expression of pro-inflammatory cytokines in the liver (i.e., TNF-α) and lung (i.e., macrophage inflammatory protein-2 [MIP-2], keratinocyte chemoattractant [KC]). Systemic depletion of TNF-α (etanercept) blunted injury and the increase in MIP-2 and KC caused by the combination of EtOH and LPS in the lung. CONCLUSIONS: Chronic EtOH preexposure enhanced both liver and lung injury caused by LPS. Enhanced organ injury corresponded with unique changes in the pro-inflammatory cytokine expression profiles in the liver and the lung.


Assuntos
Etanol/farmacologia , Lesão Pulmonar/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Líquido da Lavagem Broncoalveolar/química , Quimiocina CXCL2/metabolismo , Quimiocinas/metabolismo , Etanercepte/farmacologia , Lipopolissacarídeos , Fígado/metabolismo , Lesão Pulmonar/induzido quimicamente , Masculino , Camundongos , Fator de Necrose Tumoral alfa/antagonistas & inibidores
11.
Res Pract Thromb Haemost ; 8(1): 102323, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38404941

RESUMO

Background: Acetaminophen (APAP) overdose is a leading cause of drug-induced acute liver failure (ALF). Neutrophil activation has been associated with poor outcomes in patients with ALF and is proposed to amplify coagulation in this context. However, the precise role of neutrophils in APAP-induced liver injury is not known. Methods: We used a dual antibody-mediated neutrophil depletion strategy to determine the role of neutrophils in mice challenged with different doses of APAP (300 or 600 mg/kg) that produce hepatotoxicity and ALF-like pathology. Results: Flow cytometry confirmed depletion of neutrophils in whole blood prior to APAP challenge. Mice given isotype control and challenged with 300 mg/kg APAP developed marked hepatocellular necrosis and showed an increase in biomarkers of coagulation cascade activation. Neutrophil depletion (anti-Ly6G) did not affect either liver injury or coagulation activation in mice challenged with 300 mg/kg APAP. Mice given isotype control and challenged with 600 mg/kg APAP developed hepatic necrosis alongside marked hemorrhage and congestion indicative of vascular injury. Interestingly, hepatic neutrophil and platelet accumulation were increased in mice given 600 mg/kg APAP compared with those given the lower APAP dose. Neutrophil depletion significantly reduced the severity of liver necrosis in mice challenged with 600 mg/kg APAP, without significantly impacting biomarkers of coagulation activity. Notably, neutrophil depletion significantly reduced hepatic platelet accumulation in mice challenged with 600 mg/kg APAP. Conclusion: The results indicate a role of neutrophils in APAP-induced liver injury that is dependent on the APAP dose and suggest involvement of neutrophil-platelet interactions in promoting hepatic injury in experimental APAP-induced ALF.

12.
J Thromb Haemost ; 22(3): 620-632, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38007060

RESUMO

BACKGROUND: Activation of coagulation and fibrin deposition in the regenerating liver appears to promote adequate liver regeneration in mice. In humans, perioperative hepatic fibrin deposition is reduced in patients who develop liver dysfunction after partial hepatectomy (PHx), but the mechanism underlying reduced fibrin deposition in these patients is unclear. METHODS AND RESULTS: Hepatic deposition of cross-linked (ie, stabilized) fibrin was evident in livers of mice after two-thirds PHx. Interestingly, hepatic fibrin cross-linking was dramatically reduced in mice after 90% PHx, an experimental setting of failed liver regeneration, despite similar activation of coagulation after two-thirds or 90% PHx. Likewise, intraoperative activation of coagulation was not reduced in patients who developed liver dysfunction after PHx. Preoperative fibrinogen plasma concentration was not connected to liver dysfunction after PHx in patients. Rather, preoperative and postoperative plasma activity of the transglutaminase coagulation factor (F)XIII, which cross-links fibrin, was lower in patients who developed liver dysfunction than in those who did not. PHx-induced hepatic fibrin cross-linking and hepatic platelet accumulation were significantly reduced in mice lacking the catalytic subunit of FXIII (FXIII-/- mice) after two-thirds PHx. This was coupled with a reduction in both hepatocyte proliferation and liver-to-body weight ratio as well as an apparent reduction in survival after two-thirds PHx in FXIII-/- mice. CONCLUSION: The results indicate that FXIII is a critical driver of liver regeneration after PHx and suggest that perioperative plasma FXIII activity may predict posthepatectomy liver dysfunction. The results may inform strategies to stabilize proregenerative fibrin during liver resection.


Assuntos
Hepatectomia , Hepatopatias , Humanos , Camundongos , Animais , Hepatectomia/efeitos adversos , Hepatectomia/métodos , Regeneração Hepática/fisiologia , Fator XIII , Fígado/cirurgia , Fibrina
13.
J Infect Dis ; 206(1): 28-34, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22536001

RESUMO

BACKGROUND: We address the key emerging question of whether Lin(-)/CD34(+) hematopoietic precursor cells (HPCs) represent an important latent reservoir of human immunodeficiency virus type 1 (HIV-1) during long-term suppressive therapy. METHODS: To estimate the frequency of HIV-1 infection in bone marrow, we sorted Lin(-)/CD34(+) HPCs and 3 other cell types (Lin(-)/CD34(-), Lin(-)/CD4(+), and Lin(+)/CD4(+)) from 8 patients who had undetectable viral loads for 3-12 years. Using a single-proviral sequencing method, we extracted, amplified, and sequenced multiple single HIV-1 DNA molecules from these cells and memory CD4(+) T cells from contemporaneous peripheral blood samples. RESULTS: We analyzed 100,000-870,000 bone marrow Lin(-)/CD34(+) HPCs from the 8 patients and found no HIV-1 DNA. We did isolate HIV-1 DNA from their bone marrow Lin(+)/CD4(+) cells that was genetically similar to HIV-1 DNA from lymphoid cells located in the peripheral blood, indicating an exchange of infected cells between these compartments. CONCLUSIONS: The absence of infected HPCs provides strong evidence that the HIV-1 infection frequency of Lin(-)/CD34(+) HPCs from bone marrow, if it occurred, was <.003% (highest upper 95% confidence interval) in all 8 patients. These results strongly suggest that Lin(-)/CD34(+) HPCs in bone marrow are not a source of persistent HIV-1 in patients on long-term suppressive therapy.


Assuntos
DNA Viral/genética , DNA Viral/isolamento & purificação , Infecções por HIV/virologia , HIV-1/genética , HIV-1/isolamento & purificação , Células-Tronco Hematopoéticas/virologia , Antígenos CD34/genética , Antígenos CD34/imunologia , Medula Óssea/imunologia , Medula Óssea/virologia , Linfócitos T CD4-Positivos/virologia , Estudos de Coortes , Infecções por HIV/imunologia , HIV-1/imunologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Filogenia , Carga Viral/genética
14.
J Thromb Haemost ; 21(9): 2430-2440, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37054919

RESUMO

BACKGROUND: Patients with acetaminophen (APAP)-induced acute liver failure (ALF) display both hyper- and hypocoagulable changes not necessarily recapitulated by standard hepatotoxic doses of APAP used in mice (eg, 300 mg/kg). OBJECTIVES: We sought to examine coagulation activation in vivo and plasma coagulation potential ex vivo in experimental settings of APAP-induced hepatotoxicity and repair (300-450 mg/kg) and APAP-induced ALF (600 mg/kg) in mice. RESULTS: APAP-induced ALF was associated with increased plasma thrombin-antithrombin complexes, decreased plasma prothrombin, and a dramatic reduction in plasma fibrinogen compared with lower APAP doses. Hepatic fibrin(ogen) deposits increased independent of APAP dose, whereas plasma fibrin(ogen) degradation products markedly increased in mice with experimental ALF. Early pharmacologic anticoagulation (+2 hours after 600 mg/kg APAP) limited coagulation activation and reduced hepatic necrosis. The marked coagulation activation evident in mice with APAP-induced ALF was associated with a coagulopathy detectable ex vivo in plasma. Specifically, prolongation of the prothrombin time and inhibition of tissue factor-initiated clot formation were evident even after restoration of physiological fibrinogen concentrations. Plasma endogenous thrombin potential was similarly reduced at all APAP doses. Interestingly, in the presence of ample fibrinogen, ∼10 times more thrombin was required to clot plasma from mice with APAP-induced ALF compared with plasma from mice with simple hepatotoxicity. CONCLUSION: The results indicate that robust pathologic coagulation cascade activation in vivo and suppressed coagulation ex vivo are evident in mice with APAP-induced ALF. This unique experimental setting may fill an unmet need as a model to uncover mechanistic aspects of the complex coagulopathy of ALF.


Assuntos
Transtornos da Coagulação Sanguínea , Doença Hepática Induzida por Substâncias e Drogas , Falência Hepática , Camundongos , Animais , Acetaminofen/metabolismo , Trombina/metabolismo , Falência Hepática/metabolismo , Falência Hepática/patologia , Fígado/metabolismo , Fibrina/metabolismo , Transtornos da Coagulação Sanguínea/induzido quimicamente , Transtornos da Coagulação Sanguínea/metabolismo , Fibrinogênio/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Camundongos Endogâmicos C57BL
15.
J Thromb Haemost ; 21(8): 2175-2188, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37062522

RESUMO

BACKGROUND: Hepatic deposition of cross-linked fibrin(ogen) occurs alongside platelet accumulation as a hallmark of acetaminophen (APAP)-induced liver injury. OBJECTIVES: We sought to define the precise role of the fibrinogen γ-chain C-terminal integrin αIIbß3 binding domain in APAP-induced liver injury. METHODS: Mice expressing mutant fibrinogen incapable of engaging integrin αIIbß3 due to a C-terminal fibrinogen γ-chain truncation (mutant fibrinogen-γΔ5 [FibγΔ5] mice) and wild-type mice were challenged with APAP (300 mg/kg, intraperitoneally). RESULTS: We observed an altered pattern of fibrin(ogen) deposition in the livers of APAP-challenged FibγΔ5 mice. This led to the unexpected discovery that fibrinogen γ-chain cross-linking was altered in the livers of APAP-challenged FibγΔ5 mice compared with that in wild-type mice, including absence of γ-γ dimer and accumulation of larger molecular weight cross-linked γ-chain complexes. This finding was not unique to the injured liver because activation of coagulation did not produce γ-γ dimer in plasma from FibγΔ5 mice or purified FibγΔ5 fibrinogen. Sanger sequencing predicted that the fibrinogen-γΔ5 γ-polypeptide would terminate at lysine residue 406, but liquid chromatography tandem mass spectrometry analysis revealed that this critical lysine residue was absent in purified fibrinogen-γΔ5 protein. Interestingly, hepatic deposition of this uniquely aberrantly cross-linked fibrin(ogen) in FibγΔ5 mice was associated with exacerbated hepatic injury, an effect not recapitulated by pharmacologic inhibition of integrin αIIbß3. CONCLUSION: The results indicate that fibrinogen-γΔ5 lacks critical residues essential to form γ-γ dimer in response to thrombin and suggest that hepatic accumulation of abnormally cross-linked fibrin(ogen) can exacerbate hepatic injury.


Assuntos
Acetaminofen , Doença Hepática Crônica Induzida por Substâncias e Drogas , Animais , Camundongos , Fibrina/metabolismo , Fibrinogênio/genética , Fibrinogênio/metabolismo , Integrinas , Lisina
16.
J Thromb Haemost ; 20(5): 1182-1192, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35158413

RESUMO

BACKGROUND: The blood coagulation factor fibrin(ogen) can modulate inflammation by altering leukocyte activity. Analyses of fibrin(ogen)-mediated proinflammatory activity have largely focused on leukocyte integrin binding activity revealed by conversion of fibrinogen to a stabilized fibrin polymer by blood coagulation enzymes. In addition to coagulation enzymes, fibrinogen is a substrate for tissue transglutaminase-2 (TG2), a widely expressed enzyme that produces unique fibrinogen Aα-γ chain cross-linked products. OBJECTIVES: We tested the hypothesis that TG2 dependent cross-linking alters the proinflammatory activity of surface-adhered fibrinogen. METHODS: Mouse bone marrow-derived macrophages (BMDMs) were cultured on tissue culture plates coated with fibrinogen or TG2-cross-linked fibrinogen (10 µg/ml) and then stimulated with lipopolysaccharide (LPS, 1 ng/ml) or vehicle for various times. RESULTS: In the absence of LPS stimulation, TG2-cross-linked fibrin(ogen) enhanced inflammatory gene induction (e.g., Tnfα) compared with unmodified fibrinogen. LPS stimulation induced mitogen-activated protein kinase phosphorylation, IκBα degradation, and expression of proinflammatory cytokines (e.g., tumor necrosis factor α) within 60 min. This initial cellular activation was unaffected by unmodified or TG2-cross-linked fibrinogen. In contrast, LPS induction of interleukin-10 mRNA and protein and STAT3 phosphorylation was selectively attenuated by TG2-cross-linked fibrinogen, which was associated with enhanced proinflammatory cytokine secretion by LPS-stimulated BMDMs at later time points (6 and 24 h). CONCLUSIONS: The results indicate that atypical cross-linking by TG2 imparts unique proinflammatory activity to surface-adhered fibrinogen. The results suggest a novel coagulation-independent mechanism controlling fibrinogen-directed macrophage activation.


Assuntos
Lipopolissacarídeos , Proteína 2 Glutamina gama-Glutamiltransferase , Animais , Fibrina/metabolismo , Fibrinogênio/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Transglutaminases/genética , Transglutaminases/metabolismo , Fator de Necrose Tumoral alfa
17.
J Thromb Haemost ; 19(6): 1390-1408, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33774926

RESUMO

Acute and chronic liver disease are associated with substantial alterations in the hemostatic system. Evidence from both experimental and clinical studies suggests that anticoagulants slow the progression of liver disease. Efficacy of those anticoagulant drugs is, in part, attributed to a reduction of microthrombi formation within the liver. Although anticoagulant drugs show promising results, bleeding risk associated with these drugs is an obvious drawback, particularly in patients with a complex coagulopathy driven by decreased liver function. Identifying therapies that reduce intrahepatic thrombosis with minimal bleeding risk would significantly advance the field. Among the hemostatic alterations observed in patients are substantially increased levels of the platelet-adhesive protein von Willebrand factor (VWF). In contrast, levels of A Disintegrin and Metalloproteinase with Thrombospondin motifs, the enzyme that regulates VWF activity, are significantly reduced in patients with liver disease. Highly elevated VWF levels are proposed to accelerate intrahepatic thrombus formation and thus be a driver of disease progression. Strong clinical evidence suggesting a link between liver disease and changes in VWF is now being matched by emerging mechanistic data showing a detrimental role for VWF in the progression of liver disease. This review focuses on clinical and experimental evidence supporting a connection between VWF function and the progression of acute and chronic liver diseases. Furthermore, with the recent anticipated approval of several novel therapies targeting VWF, we discuss potential strategies and benefits of targeting VWF as an innovative therapy for patients with liver disease.


Assuntos
Hepatopatias , Trombose , Doenças de von Willebrand , Proteína ADAMTS13 , Plaquetas , Hemostasia , Humanos , Hepatopatias/tratamento farmacológico , Fator de von Willebrand
18.
Toxicology ; 463: 152968, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619301

RESUMO

Acute and chronic liver disease are associated with substantial alterations in the hemostatic system, including elevated levels of the platelet-adhesive protein von Willebrand factor (VWF). Carbon tetrachloride-induced liver fibrosis is reduced in VWF-deficient mice, but it is unclear if VWF plays a pathologic role in all settings of liver fibrosis. Indeed, several studies suggest an anti-fibrotic role for components of the hemostatic system, including platelets, in experimental settings of bile duct fibrosis. However, the role of VWF in this specific pathology has not been examined. We tested the hypothesis that VWF exerts hepatoprotective effects in experimental bile duct injury. Wild-type and VWF-deficient (VWF-/-) mice were challenged with the bile duct toxicant alpha-naphthylisothiocyanate (ANIT) and the impact of VWF deficiency on acute cholestatic liver injury and chronic liver fibrosis was determined. Acute ANIT (60 mg/kg, po)-induced cholestatic liver injury was associated with increased VWF plasma antigen and activity levels. VWF deficiency enhanced ANIT-induced hepatocellular injury, evidenced by increased plasma ALT activity and area of hepatocellular necrosis. Surprisingly, platelet accumulation within necrotic areas was increased in ANIT-challenged VWF-/- mice compared to wild-type mice. Compared to acute ANIT challenge, hepatic platelet accumulation was modest and appeared to be VWF-dependent in mice exposed to ANIT diet (0.05 %) for 6 weeks. However, contrasting the role of VWF after acute ANIT challenge, VWF deficiency did not impact biliary fibrosis induced by chronic ANIT exposure. The results suggest that VWF plays dichotomous roles in experimental acute and chronic ANIT-induced cholestatic liver injury.


Assuntos
Colestase/fisiopatologia , Cirrose Hepática/fisiopatologia , Fator de von Willebrand/genética , 1-Naftilisotiocianato , Doença Aguda , Animais , Plaquetas/metabolismo , Colestase/genética , Doença Crônica , Modelos Animais de Doenças , Feminino , Cirrose Hepática/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Res Pract Thromb Haemost ; 4(5): 906-917, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32685902

RESUMO

BACKGROUND: Blood coagulation protease activity is proposed to drive hepatic fibrosis through activation of protease-activated receptors (PARs). Whole-body PAR-1 deficiency reduces experimental hepatic fibrosis, and in vitro studies suggest a potential contribution by PAR-1 expressed by hepatic stellate cells. However, owing to a lack of specific tools, the cell-specific role of PAR-1 in experimental hepatic fibrosis has never been formally investigated. Using a novel mouse expressing a conditional PAR-1 allele, we tested the hypothesis that PAR-1 expressed by hepatic stellate cells contributes to hepatic fibrosis. METHODS: PAR-1flox/flox mice were crossed with mice expressing Cre recombinase controlled by the lecithin retinol acyltransferase (LRAT) promoter, which induces recombination in hepatic stellate cells. Male PAR-1flox/flox/LRATCre and PAR-1flox/flox mice were challenged twice weekly with carbon tetrachloride (CCl4, 1 mL/kg i.p.) for 6 weeks to induce liver fibrosis. RESULTS: PAR-1 mRNA levels were reduced (>95%) in hepatic stellate cells isolated from PAR-1flox/flox/LRATCre mice. Hepatic stellate cell activation was evident in CCl4-challenged PAR-1flox/flox mice, indicated by increased α-smooth muscle actin labeling and induction of several profibrogenic genes. CCl4-challenged PAR-1flox/flox mice displayed robust hepatic collagen deposition, indicated by picrosirius red staining and type I collagen immunolabeling. Notably, stellate cell activation and collagen deposition were significantly reduced (>30%) in PAR-1flox/flox/LRATCre mice. Importantly, the reduction in liver fibrosis was not a consequence of reduced acute CCl4 hepatotoxicity in PAR-1flox/flox/LRATCre mice. CONCLUSIONS: The results constitute the first direct experimental evidence that PAR-1 expressed by stellate cells directly promotes their profibrogenic phenotype and hepatic fibrosis in vivo.

20.
Alcohol ; 80: 53-63, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30445135

RESUMO

INTRODUCTION: Alcohol use disorders are major risk factors for the development of and susceptibility to acute respiratory distress syndrome. Although these risks of alcohol consumption on the lung are well described, mechanisms by which alcohol abuse promotes acute lung injury are poorly understood. These gaps in our understanding are due, at least in part, to limitations of animal models to recapitulate human alcohol consumption. Recently, a new model of chronic plus binge alcohol exposure was developed that is hypothesized to better model drinking patterns of individuals with alcohol use disorders. Specifically, this paradigm models chronic consumption coupled with periodic bouts of heavy drinking. The impacts of this alcohol-exposure regimen on the lung are uncharacterized. Therefore, the goal of this study was to examine lung injury and inflammation in a well-characterized experimental model of chronic + binge alcohol exposure. METHODS: 10-week-old male C57Bl6/J mice were administered ethanol-containing (or isocaloric control) liquid diet for 10 days, followed by a single ethanol gavage (5 g/kg). Lung inflammation and pulmonary function were assessed. RESULTS: Ten days of ethanol-containing liquid diet alone (chronic) did not detectably affect any variables measured. However, ethanol diet plus gavage (chronic + binge) caused neutrophils to accumulate in the lung tissue and in the bronchoalveolar lavage fluid 24 h post-binge. This inflammatory cell recruitment was associated with airway hyper-responsiveness to inhaled methacholine, as indicated by elevated resistance, Newtonian resistance, and respiratory resistance. CONCLUSIONS: Taken together, the novel findings reveal that ethanol alone, absent of any secondary inflammatory insult, is sufficient to produce inflammation in the lung. Although these changes were relatively mild, they were associated with functional changes in the central airways. This animal model may be useful in the future for identifying mechanisms by which alcohol abuse sensitizes at-risk individuals to lung injury.


Assuntos
Alcoolismo/complicações , Consumo Excessivo de Bebidas Alcoólicas/complicações , Pulmão/efeitos dos fármacos , Pneumonia/induzido quimicamente , Alcoolismo/patologia , Alcoolismo/fisiopatologia , Animais , Consumo Excessivo de Bebidas Alcoólicas/patologia , Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/patologia , Pneumonia/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa