Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 59(10): 2052-2063, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982633

RESUMO

SAG12 is the most widely used senescence-associated reference gene for characterizing leaf senescence, and the increase in SAG12 protein during leaf senescence is remarkable. However, the role of this cysteine protease in N remobilization and the leaf senescence process remains unclear. The role of SAG12 has been poorly investigated and the few reports dealing with this are somewhat controversial. Indeed, sag12 Arabidopsis mutants have not shown any phenotype, while OsSAG12-1 and OsSAG12-2 overexpression in rice moderates senescence progression. Therefore, this study aims at clarifying the role of the SAG12 cysteine protease during the entire plant life span and during leaf senescence. Arabidopsis thaliana plants knocked-out for the SAG12 gene (sag12) did not exhibit any special phenotypic traits when grown under optimal nitrogen supply (HN), suggesting that other cysteine proteases could provide compensatory effects. Moreover, for the first time, this study shows that aspartate protease activity is significantly increased in sag12. Among the putative aspartate proteases involved, a CND41-like aspartate protease has been identified. Under low nitrogen (LN) availability, when inducible proteolytic systems are not sufficient to cope with SAG12 depletion, a decrease in yield is observed. Altogether, these results show that SAG12 (and perhaps also aspartate proteases) could be involved in RuBisCO degradation during the leaf senescence associated with seed filling.


Assuntos
Cisteína Proteases/metabolismo , Nitrogênio/metabolismo , Oryza/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cisteína Proteases/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética
2.
J Exp Bot ; 66(9): 2461-73, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25792758

RESUMO

Oilseed rape, a crop requiring a high level of nitogen (N) fertilizers, is characterized by low N use efficiency. To identify the limiting factors involved in the N use efficiency of winter oilseed rape, the response to low N supply was investigated at the vegetative stage in 10 genotypes by using long-term pulse-chase (15)N labelling and studying the physiological processes of leaf N remobilization. Analysis of growth and components of N use efficiency allowed four profiles to be defined. Group 1 was characterized by an efficient N remobilization under low and high N conditions but by a decrease of leaf growth under N limitation. Group 2 showed a decrease in leaf growth under low N supply that was associated with a low N remobilization efficiency under both N supplies despite a high remobilization of soluble proteins. In response to N limitation, Group 3 is characterized by an increase in N use efficiency and leaf N remobilization compared with high N that is not sufficient to sustain the leaf biomass production at a similar level to non-limited plants. Genotypes of Group 4 subjected to low nitrate were able to maintain leaf growth to the same level as under high N. The profiling approach indicated that enhancement of amino acid export and soluble protein degradation was crucial for N remobilization improvement. At the whole-plant level, N fluxes revealed that Group 4 showed a high N remobilization in source leaves combined with a better N utilization in young leaves. Consequently, an enhanced N remobilization limits N loss in fallen leaves, but this remobilized N needs to be efficiently utilized in young leaves to improve N use efficiency.


Assuntos
Brassica napus/genética , Nitrogênio/metabolismo , Brassica napus/metabolismo , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
3.
Front Plant Sci ; 10: 46, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30778361

RESUMO

Oilseed rape (Brassica napus L.) is an oleoproteaginous crop characterized by low N use efficiency (NUE) that is mainly related to a weak Nitrogen Remobilization Efficiency (NRE) during the sequential leaf senescence of the vegetative stages. Based on the hypothesis that proteolysis efficiency is crucial for the improvement of leafNRE, our objective was to characterize key senescence-associated proteolytic mechanisms of two genotypes (Ténor and Samouraï) previously identified with contrasting NREs. To reach this goal, biochemical changes, protease activities and phytohormone patterns were studied in mature leaves undergoing senescence in two genotypes with contrasting NRE cultivated in a greenhouse under limiting or ample nitrate supply. The genotype with the higher NRE (Ténor) possessed enhanced senescence processes in response to nitrate limitation, and this led to greater degradation of soluble proteins compared to the other genotype (Samouraï). This efficient proteolysis is associated with (i) an increase in serine and cysteine protease (CP) activities and (ii) the appearance of new CP activities (RD21-like, SAG12-like, RD19-like, cathepsin-B, XBCP3-like and aleurain-like proteases) during senescence induced by N limitation. Compared to Samouraï, Ténor has a higher hormonal ratio ([salicylic acid] + [abscisic acid])/([cytokinins]) that promotes senescence, particularly under low N conditions, and this is correlated with the stronger protein degradation and serine/CP activities observed during senescence. Short statement: The improvement in N recycling during leaf senescence in a genotype of Brassica napus L. characterized by a high nitrogen remobilization efficiency is related to a high phytohormonal ratio ([salicylic acid] + [abscisic acid])/([cytokinins]) that promotes leaf senescence and is correlated with an increase or the induction of specific serine and cysteine protease activities.

4.
Proteomes ; 5(4)2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29099081

RESUMO

Oilseed rape is characterized by a low nitrogen remobilization efficiency during leaf senescence, mainly due to a lack of proteolysis. Because cotyledons are subjected to senescence, it was hypothesized that contrasting protease activities between genotypes may be distinguishable early in the senescence of cotyledons. To verify this assumption, our goals were to (i) characterize protease activities in cotyledons between two genotypes with contrasting nitrogen remobilization efficiency (Ténor and Samouraï) under limiting or ample nitrate supply; and (ii) test the role of salicylic acid (SA) and abscisic acid (ABA) in proteolysis regulation. Protease activities were measured and identified by a proteomics approach combining activity-based protein profiling with LC-MS/MS. As in senescing leaves, chlorophyll and protein contents decrease in senescing cotyledons and are correlated with an increase in serine and cysteine protease activities. Two RD21-like and SAG-12 proteases previously associated with an efficient proteolysis in senescing leaves of Ténor are also detected in senescing cotyledons. The infiltration of ABA and SA provokes the induction of senescence and several cysteine and serine protease activities. The study of protease activities during the senescence of cotyledons seems to be a promising experimental model to investigate the regulation and genotypic variability of proteolysis associated with efficient N remobilization.

5.
Plant Sci ; 246: 139-153, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26993244

RESUMO

Oilseed rape (Brassica napus L.) is a crop plant characterized by a poor nitrogen (N) use efficiency that is mainly due to low N remobilization efficiency during the sequential leaf senescence of the vegetative stage. As a high leaf N remobilization efficiency was strongly linked to a high remobilization of proteins during leaf senescence of rapeseed, our objective was to identify senescence-associated protease activities implicated in the protein degradation. To reach this goal, leaf senescence processes and protease activities were investigated in a mature leaf becoming senescent in plants subjected to ample or low nitrate supply. The characterization of protease activities was performed by using in vitro analysis of RuBisCO degradation with or without inhibitors of specific protease classes followed by a protease activity profiling using activity-dependent probes. As expected, the mature leaf became senescent regardless of the nitrate treatment, and nitrate limitation enhanced the senescence processes associated with an enhanced degradation of soluble proteins. The characterization of protease activities revealed that: (i) aspartic proteases and the proteasome were active during senescence regardless of nitrate supply, and (ii) the activities of serine proteases and particularly cysteine proteases (Papain-like Cys proteases and vacuolar processing enzymes) increased when protein remobilization associated with senescence was accelerated by nitrate limitation. Short statement: Serine and particularly cysteine proteases (both PLCPs and VPEs) seem to play a crucial role in the efficient protein remobilization when leaf senescence of oilseed rape was accelerated by nitrate limitation.


Assuntos
Brassica napus/metabolismo , Peptídeo Hidrolases/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Estações do Ano , Brassica napus/crescimento & desenvolvimento , Cromatografia Líquida , Concentração de Íons de Hidrogênio , Folhas de Planta/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ribulose-Bifosfato Carboxilase/metabolismo , Sementes/metabolismo , Solubilidade , Espectrometria de Massas em Tandem , Regulação para Cima , Vacúolos/metabolismo
6.
Plants (Basel) ; 5(1)2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-27135221

RESUMO

Winter oilseed rape is characterized by a low N use efficiency related to a weak leaf N remobilization efficiency (NRE) at vegetative stages. By investigating the natural genotypic variability of leaf NRE, our goal was to characterize the relevant physiological traits and the main protease classes associated with an efficient proteolysis and high leaf NRE in response to ample or restricted nitrate supply. The degradation rate of soluble proteins and D1 protein (a thylakoid-bound protein) were correlated to N remobilization, except for the genotype Samouraï which showed a low NRE despite high levels of proteolysis. Under restricted nitrate conditions, high levels of soluble protein degradation were associated with serine, cysteine and aspartic proteases at acidic pH. Low leaf NRE was related to a weak proteolysis of both soluble and thylakoid-bound proteins. The results obtained on the genotype Samouraï suggest that the timing between the onset of proteolysis and abscission could be a determinant. The specific involvement of acidic proteases suggests that autophagy and/or senescence-associated vacuoles are implicated in N remobilization under low N conditions. The data revealed that the rate of D1 degradation could be a relevant indicator of leaf NRE and might be used as a tool for plant breeding.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa