Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 175(4): 998-1013.e20, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388456

RESUMO

Treatment of cancer has been revolutionized by immune checkpoint blockade therapies. Despite the high rate of response in advanced melanoma, the majority of patients succumb to disease. To identify factors associated with success or failure of checkpoint therapy, we profiled transcriptomes of 16,291 individual immune cells from 48 tumor samples of melanoma patients treated with checkpoint inhibitors. Two distinct states of CD8+ T cells were defined by clustering and associated with patient tumor regression or progression. A single transcription factor, TCF7, was visualized within CD8+ T cells in fixed tumor samples and predicted positive clinical outcome in an independent cohort of checkpoint-treated patients. We delineated the epigenetic landscape and clonality of these T cell states and demonstrated enhanced antitumor immunity by targeting novel combinations of factors in exhausted cells. Our study of immune cell transcriptomes from tumors demonstrates a strategy for identifying predictors, mechanisms, and targets for enhancing checkpoint immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Transcriptoma , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Antígenos CD/imunologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacologia , Apirase/antagonistas & inibidores , Apirase/imunologia , Linhagem Celular Tumoral , Humanos , Antígenos Comuns de Leucócito/antagonistas & inibidores , Antígenos Comuns de Leucócito/imunologia , Melanoma/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator 1 de Transcrição de Linfócitos T/metabolismo
3.
Cell Syst ; 12(7): 716-732.e7, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34051140

RESUMO

Gene fragments derived from structural domains mediating physical interactions can modulate biological functions. Utilizing this, we developed lentiviral overexpression libraries of peptides comprehensively tiling high-confidence cancer driver genes. Toward inhibiting cancer growth, we assayed ~66,000 peptides, tiling 65 cancer drivers and 579 mutant alleles. Pooled fitness screens in two breast cancer cell lines revealed peptides, which selectively reduced cellular proliferation, implicating oncogenic protein domains important for cell fitness. Coupling of cell-penetrating motifs to these peptides enabled drug-like function, with peptides derived from EGFR and RAF1 inhibiting cell growth at IC50s of 27-63 µM. We anticipate that this peptide-tiling (PepTile) approach will enable rapid de novo mapping of bioactive protein domains and associated interfering peptides.


Assuntos
Neoplasias , Proliferação de Células , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oncogenes , Peptídeos/química , Peptídeos/farmacologia , Domínios Proteicos
4.
Tissue Eng Part A ; 27(5-6): 297-310, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-30760135

RESUMO

Severe peripheral nerve injuries have devastating consequences on the quality of life in affected patients, and they represent a significant unmet medical need. Destruction of nerve fibers results in denervation of targeted muscles, which, subsequently, undergo progressive atrophy and loss of function. Timely restoration of neural innervation to muscle fibers is crucial to the preservation of muscle homeostasis and function. The goal of this study was to evaluate the impact of addition of adipose stem cells (ASCs) to polycaprolactone (PCL) nerve conduit guides on peripheral nerve repair and functional muscle recovery in the setting of a critical size nerve defect. To this end, peripheral nerve injury was created by surgically ablating 6 mm of the common peroneal nerve in a rat model. A PCL nerve guide, filled with ASCs and/or poloxamer hydrogel, was sutured to the nerve ends. Negative and positive controls included nerve ablation only (no repair), and reversed polarity autograft nerve implant, respectively. Tibialis anterior (TA) muscle function was assessed at 4, 8, and 12 weeks postinjury, and nerve and muscle tissue was retrieved at the 12-week terminal time point. Inclusion of ASCs in the PCL nerve guide elicited statistically significant time-dependent increases in functional recovery (contraction) after denervation; ∼25% higher than observed in acellular (poloxamer-filled) implants and indistinguishable from autograft implants, respectively, at 12 weeks postinjury (p < 0.05, n = 7-8 in each group). Analysis of single muscle fiber cross-sectional area (CSA) revealed that ASC-based treatment of nerve injury provided a better recapitulation of the overall distribution of muscle fiber CSAs observed in the contralateral TA muscle of uninjured limbs. In addition, the presence of ASCs was associated with improved features of re-innervation distal to the defect, with respect to neurofilament and S100 (Schwann cell marker) expression. In conclusion, these initial studies indicate significant benefits of inclusion of ASCs to the rate and magnitude of both peripheral nerve regeneration and functional recovery of muscle contraction, to levels equivalent to autograft implantation. These findings have important implications to improved nerve repair, and they provide input for future work directed to restoration of nerve and muscle function after polytraumatic injury. Impact Statement This works explores the application of adipose stem cells (ASCs) for peripheral nerve regeneration in a rat model. Herein, we demonstrate that the addition of ASCs in poloxamer-filled PCL nerve guide conduits impacts nerve regeneration and recovery of muscle function, to levels equivalent to autograft implantation, which is considered to be the current gold standard treatment. This study builds on the importance of a timely restoration of innervation to muscle fibers for preservation of muscle homeostasis, and it will provide input for future work aiming at restoring nerve and muscle function after polytraumatic injury.


Assuntos
Traumatismos dos Nervos Periféricos , Nervo Fibular , Animais , Humanos , Músculo Esquelético , Regeneração Nervosa , Qualidade de Vida , Ratos , Nervo Isquiático , Células-Tronco
5.
J Clin Invest ; 131(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33151910

RESUMO

Resistance to oncogene-targeted therapies involves discrete drug-tolerant persister cells, originally discovered through in vitro assays. Whether a similar phenomenon limits efficacy of programmed cell death 1 (PD-1) blockade is poorly understood. Here, we performed dynamic single-cell RNA-Seq of murine organotypic tumor spheroids undergoing PD-1 blockade, identifying a discrete subpopulation of immunotherapy persister cells (IPCs) that resisted CD8+ T cell-mediated killing. These cells expressed Snai1 and stem cell antigen 1 (Sca-1) and exhibited hybrid epithelial-mesenchymal features characteristic of a stem cell-like state. IPCs were expanded by IL-6 but were vulnerable to TNF-α-induced cytotoxicity, relying on baculoviral IAP repeat-containing protein 2 (Birc2) and Birc3 as survival factors. Combining PD-1 blockade with Birc2/3 antagonism in mice reduced IPCs and enhanced tumor cell killing in vivo, resulting in durable responsiveness that matched TNF cytotoxicity thresholds in vitro. Together, these data demonstrate the power of high-resolution functional ex vivo profiling to uncover fundamental mechanisms of immune escape from durable anti-PD-1 responses, while identifying IPCs as a cancer cell subpopulation targetable by specific therapeutic combinations.


Assuntos
Imunoterapia , Proteínas de Neoplasias , Neoplasias Experimentais , Receptor de Morte Celular Programada 1 , RNA-Seq , Análise de Célula Única , Esferoides Celulares , Animais , Linhagem Celular Tumoral , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Esferoides Celulares/imunologia , Esferoides Celulares/patologia
6.
Cancer Discov ; 11(8): 1952-1969, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33707236

RESUMO

Small cell lung carcinoma (SCLC) is highly mutated, yet durable response to immune checkpoint blockade (ICB) is rare. SCLC also exhibits cellular plasticity, which could influence its immunobiology. Here we discover that a distinct subset of SCLC uniquely upregulates MHC I, enriching for durable ICB benefit. In vitro modeling confirms epigenetic recovery of MHC I in SCLC following loss of neuroendocrine differentiation, which tracks with derepression of STING. Transient EZH2 inhibition expands these nonneuroendocrine cells, which display intrinsic innate immune signaling and basally restored antigen presentation. Consistent with these findings, murine nonneuroendocrine SCLC tumors are rejected in a syngeneic model, with clonal expansion of immunodominant effector CD8 T cells. Therapeutically, EZH2 inhibition followed by STING agonism enhances T-cell recognition and rejection of SCLC in mice. Together, these data identify MHC I as a novel biomarker of SCLC immune responsiveness and suggest novel immunotherapeutic approaches to co-opt SCLC's intrinsic immunogenicity. SIGNIFICANCE: SCLC is poorly immunogenic, displaying modest ICB responsiveness with rare durable activity. In profiling its plasticity, we uncover intrinsically immunogenic MHC Ihi subpopulations of nonneuroendocrine SCLC associated with durable ICB benefit. We also find that combined EZH2 inhibition and STING agonism uncovers this cell state, priming cells for immune rejection.This article is highlighted in the In This Issue feature, p. 1861.


Assuntos
Plasticidade Celular , Neoplasias Pulmonares/imunologia , Carcinoma de Pequenas Células do Pulmão/imunologia , Animais , Estudos de Coortes , Modelos Animais de Doenças , Registros Eletrônicos de Saúde , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Carcinoma de Pequenas Células do Pulmão/patologia
7.
Clin Cancer Res ; 26(10): 2393-2403, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32034078

RESUMO

PURPOSE: Evaluating drug responses using primary patient-derived cells ex vivo represents a potentially rapid and efficient approach to screening for new treatment approaches. Here, we sought to identify neratinib combinations in HER2 mutant non-small cell lung cancer (NSCLC) patient xenograft-derived organotypic spheroids (XDOTS) using a short-term ex vivo system. EXPERIMENTAL DESIGN: We generated two HER2-mutant NSCLC PDX models [DFCI359 (HER2 exon19 755_757LREdelinsRP) and DFCI315 (HER2 exon20 V777_G778insGSP)] and used the PDX tumors to generate XDOTS. Tumor spheroids were grown in a microfluidic device and treated ex vivo with neratinib-based drug combinations. Live/dead quantification was performed by dual-labeling deconvolution fluorescence microscopy. The most efficacious ex vivo combination was subsequently validated in vivo using the DFCI359 and DFCI315 PDXs and a HER2 YVMA genetically engineered mouse model. RESULTS: Both neratinib and afatinib, but not gefitinib, induced cell death in DFCI359 XDOTS. The combinations of neratinib/trastuzumab and neratinib/temsirolimus enhanced the therapeutic benefit of neratinib alone in DFCI315 and DFCI359. The combination of neratinib and trastuzumab in vivo was more effective compared with single-agent neratinib or trastuzumab and was associated with more robust inhibition of HER2 and downstream signaling. CONCLUSIONS: The XDOTS platform can be used to evaluate therapies and therapeutic combinations ex vivo using PDX tumors. This approach may accelerate the identification and clinical development of therapies for targets with no or few existing models and/or therapies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Receptor ErbB-2/genética , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Quinolinas/administração & dosagem , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Esferoides Celulares , Trastuzumab/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Cell ; 37(1): 104-122.e12, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31935369

RESUMO

Eradicating tumor dormancy that develops following epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment of EGFR-mutant non-small cell lung cancer, is an attractive therapeutic strategy but the mechanisms governing this process are poorly understood. Blockade of ERK1/2 reactivation following EGFR TKI treatment by combined EGFR/MEK inhibition uncovers cells that survive by entering a senescence-like dormant state characterized by high YAP/TEAD activity. YAP/TEAD engage the epithelial-to-mesenchymal transition transcription factor SLUG to directly repress pro-apoptotic BMF, limiting drug-induced apoptosis. Pharmacological co-inhibition of YAP and TEAD, or genetic deletion of YAP1, all deplete dormant cells by enhancing EGFR/MEK inhibition-induced apoptosis. Enhancing the initial efficacy of targeted therapies could ultimately lead to prolonged treatment responses in cancer patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Senescência Celular , Receptores ErbB/metabolismo , Feminino , Deleção de Genes , Humanos , Neoplasias Pulmonares/patologia , MAP Quinase Quinase 1/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutação , Transdução de Sinais , Transcrição Gênica , Proteínas de Sinalização YAP
10.
Lab Chip ; 18(20): 3129-3143, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30183789

RESUMO

Microfluidic culture has the potential to revolutionize cancer diagnosis and therapy. Indeed, several microdevices are being developed specifically for clinical use to test novel cancer therapeutics. To be effective, these platforms need to replicate the continuous interactions that exist between tumor cells and non-tumor cell elements of the tumor microenvironment through direct cell-cell or cell-matrix contact or by the secretion of signaling factors such as cytokines, chemokines and growth factors. Given the challenges of personalized or precision cancer therapy, especially with the advent of novel immunotherapies, a critical need exists for more sophisticated ex vivo diagnostic systems that recapitulate patient-specific tumor biology with the potential to predict response to immune-based therapies in real-time. Here, we present details of a method to screen for the response of patient tumors to immune checkpoint blockade therapy, first reported in Jenkins et al. Cancer Discovery, 2018, 8, 196-215, with updated evaluation of murine- and patient-derived organotypic tumor spheroids (MDOTS/PDOTS), including evaluation of the requirement for 3D microfluidic culture in MDOTS, demonstration of immune-checkpoint sensitivity of PDOTS, and expanded evaluation of tumor-immune interactions using RNA-sequencing to infer changes in the tumor-immune microenvironment. We also examine some potential improvements to current systems and discuss the challenges in translating such diagnostic assays to the clinic.


Assuntos
Técnicas de Cultura de Células/instrumentação , Imunidade , Dispositivos Lab-On-A-Chip , Esferoides Celulares/imunologia , Animais , Linhagem Celular Tumoral , Camundongos
11.
Cancer Discov ; 8(2): 196-215, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29101162

RESUMO

Ex vivo systems that incorporate features of the tumor microenvironment and model the dynamic response to immune checkpoint blockade (ICB) may facilitate efforts in precision immuno-oncology and the development of effective combination therapies. Here, we demonstrate the ability to interrogate ex vivo response to ICB using murine- and patient-derived organotypic tumor spheroids (MDOTS/PDOTS). MDOTS/PDOTS isolated from mouse and human tumors retain autologous lymphoid and myeloid cell populations and respond to ICB in short-term three-dimensional microfluidic culture. Response and resistance to ICB was recapitulated using MDOTS derived from established immunocompetent mouse tumor models. MDOTS profiling demonstrated that TBK1/IKKε inhibition enhanced response to PD-1 blockade, which effectively predicted tumor response in vivo Systematic profiling of secreted cytokines in PDOTS captured key features associated with response and resistance to PD-1 blockade. Thus, MDOTS/PDOTS profiling represents a novel platform to evaluate ICB using established murine models as well as clinically relevant patient specimens.Significance: Resistance to PD-1 blockade remains a challenge for many patients, and biomarkers to guide treatment are lacking. Here, we demonstrate feasibility of ex vivo profiling of PD-1 blockade to interrogate the tumor immune microenvironment, develop therapeutic combinations, and facilitate precision immuno-oncology efforts. Cancer Discov; 8(2); 196-215. ©2017 AACR.See related commentary by Balko and Sosman, p. 143See related article by Deng et al., p. 216This article is highlighted in the In This Issue feature, p. 127.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Citocinas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Imunofenotipagem , Camundongos , Técnicas Analíticas Microfluídicas , Receptor de Morte Celular Programada 1/metabolismo , Esferoides Celulares , Imagem com Lapso de Tempo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa