Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39140818

RESUMO

Nernst coefficient measurements are a classic approach to investigate charge carrier scattering in both metals and semiconductors. However, such measurements are not commonly performed, despite the potential to inform material design strategies in applications such as thermoelectricity. As dedicated instruments are extremely scarce, we present here a room temperature apparatus to measure the low field Nernst coefficient (and magneto-Seebeck coefficient) in bulk polycrystalline samples. This apparatus is specifically designed to promote accurate and facile use, with the expectation that such an instrument will make Nernst measurements de rigueur. In this apparatus, sample loading and electrical contacts are all pressure-based and alignment is automatic. Extremely stable thermal control (10 mK of fluctuation when ΔT = 1 K) is achieved from actively cooled thermoelectric modules that operate as heaters or Peltier coolers. Magneto-Seebeck measurements are integrated into the system to correct for residual probe offsets. Data from the apparatus are provided on bulk polycrystalline samples of bismuth, InSb, and SnTe, including raw data to illustrate the process of calculating the Nernst coefficient. Finally, we review how Nernst measurements, in concert with Seebeck, Hall, and electrical resistivity, can be analyzed via the Boltzmann equation in the relaxation time approximation to self-consistently predict the Fermi level, effective mass, and energy-dependent relaxation time.

2.
Phys Rev Lett ; 104(14): 142502, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20481935

RESUMO

The discovery of a new chemical element with atomic number Z=117 is reported. The isotopes (293)117 and (294)117 were produced in fusion reactions between (48)Ca and (249)Bk. Decay chains involving 11 new nuclei were identified by means of the Dubna gas-filled recoil separator. The measured decay properties show a strong rise of stability for heavier isotopes with Z > or = 111, validating the concept of the long sought island of enhanced stability for superheavy nuclei.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa