Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Inj ; 31(10): 1376-1381, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28627942

RESUMO

PRIMARY OBJECTIVE: There is a need to understand pathologic processes of the brain following mild traumatic brain injury (mTBI). Previous studies report axonal injury and oedema in the first week after injury in a rodent model. This study aims to investigate the processes occurring 1 week after injury at the time of regeneration and degeneration using diffusion tensor imaging (DTI) in the impact acceleration rat mTBI model. RESEARCH DESIGN: Eighteen rats were subjected to impact acceleration injury, and three rats served as sham controls. Seven days post injury, DTI was acquired from fixed rat brains using a 7T scanner. Group comparison of Fractional Anisotropy (FA) values between traumatized and sham animals was performed using Tract-Based Spatial Statistics (TBSS), a method that we adapted for rats. MAIN OUTCOMES AND RESULTS: TBSS revealed white matter regions of the brain with increased FA values in the traumatized versus sham rats, localized mainly to the contrecoup region. Regions of increased FA included the pyramidal tract, the cerebral peduncle, the superior cerebellar peduncle and to a lesser extent the fibre tracts of the corpus callosum, the anterior commissure, the fimbria of the hippocampus, the fornix, the medial forebrain bundle and the optic chiasm. CONCLUSION: Seven days post injury, during the period of tissue reparation in the impact acceleration rat model of mTBI, microstructural changes to white matter can be detected using DTI.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Imagem de Tensor de Difusão , Regeneração Nervosa/fisiologia , Substância Branca/diagnóstico por imagem , Animais , Anisotropia , Masculino , Modelos Animais , Projetos Piloto , Ratos , Ratos Sprague-Dawley
2.
J Lipid Res ; 54(10): 2623-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23690505

RESUMO

The interaction of dietary fats and carbohydrates on liver mitochondria were examined in male FBNF1 rats fed 20 different low-fat isocaloric diets. Animal growth rates and mitochondrial respiratory parameters were essentially unaffected, but mass spectrometry-based mitochondrial lipidomics profiling revealed increased levels of cardiolipins (CLs), a family of phospholipids essential for mitochondrial structure and function, in rats fed saturated or trans fat-based diets with a high glycemic index. These mitochondria showed elevated monolysocardiolipins (a CL precursor/product of CL degradation), elevated ratio of trans-phosphocholine (PC) (18:1/18:1) to cis-PC (18:1/18:1) (a marker of thiyl radical stress), and decreased ubiquinone Q9; the latter two of which imply a low-grade mitochondrial redox abnormality. Extended analysis demonstrated: i) dietary fats and, to a lesser extent, carbohydrates induce changes in the relative abundance of specific CL species; ii) fatty acid (FA) incorporation into mature CLs undergoes both positive (>400-fold) and negative (2.5-fold) regulation; and iii) dietary lipid abundance and incorporation of FAs into both the CL pool and specific mature tetra-acyl CLs are inversely related, suggesting previously unobserved compensatory regulation. This study reveals previously unobserved complexity/regulation of the central lipid in mitochondrial metabolism.


Assuntos
Cardiolipinas/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Mitocôndrias Hepáticas/metabolismo , Animais , Respiração Celular , Dieta , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Índice Glicêmico , Fígado/metabolismo , Masculino , Estresse Oxidativo , Consumo de Oxigênio , Ratos , Ubiquinona/metabolismo
3.
J Lipids ; 2012: 797105, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22970378

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) block apoptotic neuronal cell death and are strongly neuroprotective in acute and chronic neurodegeneration. Theoretical considerations, indirect data, and consideration of parsimony lead to the hypothesis that modulation of mitochondrial pathway(s) underlies at least some of the neuroprotective effects of n-3 PUFAs. We therefore systematically tested this hypothesis on healthy male FBFN1 rats fed for four weeks with isocaloric, 10% fat-containing diets supplemented with 1, 3, or 10% fish oil (FO). High resolution mass spectrometric analysis confirmed expected diet-driven increases in docosahexaenoic acid (DHA, 22:6, n-3) and eicosapentaenoic acid (EPA, 20:5, n-3) in sera, liver and nonsynaptosomal brain mitochondria. We further evaluated the resistance of brain and liver mitochondria to Ca(2+) overload and prooxidants. Under these conditions, neither mitochondrial resistance to Ca(2+) overload and prooxidants nor mitochondrial physiology is altered by diet, despite the expected incorporation of DHA and EPA in mitochondrial membranes and plasma. Collectively, the data eliminate one of the previously proposed mechanism(s) that n-3 PUFA induced augmentation of mitochondrial resistance to the oxidant/calcium-driven dysfunction. These data furthermore allow us to define a specific series of follow-up experiments to test related hypotheses about the effect of n-3 PUFAs on brain mitochondria.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa