Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 930: 172568, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38649048

RESUMO

Diet shift is an opportunity to mitigate the impacts of food systems, which are responsible for about a third of greenhouse gas (GHG) emissions globally and exert various environmental pressures on ecosystems. This study evaluates the mitigation potential of both global and local environmental impacts through dietary changes within the Brazilian context. Furthermore, the study aims to identify the potential benefits and trade-offs that may arise from these dietary transitions, thus providing a comprehensive analysis of the overall environmental implications. To this end, a life cycle assessment (LCA) was performed to evaluate the environmental impacts of a conventional diet in Brazil and seven alternatives, namely adjusted-EAT-Lancet, pescatarian, vegetarian, entomophagic (insect-based food), mycoprotein (microbial-based food), and synthetic (cell-based food) diets. Results indicate a substantial mitigation potential for GHG emissions (4-9 kg CO2e/cap/day) (39 % to 86 %) and land use (4-9 m2/cap/day) (38 % to 82 %) through a diet shift from a conventional diet to any of the seven alternative diets. However, certain trade-offs exist. A diet shift demonstrates no mitigation potential of soil acidification, and opportunities to reduce water eutrophication (0.02-0.2 g Pe/cap/day) (2 % to 24 %) and water consumption (0.2-0.5 m3/cap/day) (7 % to 14 %) were only found by completely substituting animal products for insect-based food, microbial-based food, and cell-based food. This study highlights the considerable potential of dietary changes to mitigate global environmental impacts associated with food systems. By revealing opportunities and challenges, this study supports science-based decision-making and guides efforts toward sustainable and environmentally friendly food consumption patterns.


Assuntos
Dieta , Ecossistema , Gases de Efeito Estufa , Brasil , Gases de Efeito Estufa/análise , Mudança Climática , Conservação dos Recursos Naturais
2.
Science ; 380(6649): 1014-1016, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37289874

RESUMO

Looking at policies instead of promises shows that global climate targets may be missed by a large margin.


Assuntos
Mudança Climática , Clima , Política Ambiental
3.
iScience ; 25(10): 105248, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36274931

RESUMO

Aviation and shipping account for 22% of total transport-related CO2 emissions. Low-carbon fuels (such as biofuels and e-fuels) are the most promising alternatives to deeply decarbonize air and maritime transport. A number of technological routes focused on the production of renewable jet fuel can coproduce marine fuels, emulating the economies of scope of crude oil refineries. This work aims to investigate possible synergies in the decarbonization of aviation and shipping in Brazil, selected as an interesting case study. An Integrated Assessment Model (IAM) of national scope is used to explore different combinations of sectoral and national climate targets. This IAM represents not only the energy supply and transport systems but also the agricultural and land-use systems. In the absence of a deep mitigation policy for Brazil, results indicate synergies related to oilseed- and lignocellulosic-based biofuels production routes. Imposing a strict carbon budget to the Brazilian economy compatible with a world well below 2°C, the portfolio of aviation and shipping fuels changes significantly with the need for carbon dioxide removal strategies based on bioenergy. In such a scenario, synergies between the two sectors still exist, but most renewable marine energy supply is a by-product of synthetic diesel produced for road transport, revealing a synergy different from the one originally investigated by this work.

4.
Glob Change Biol Bioenergy ; 9(3): 541-556, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28331552

RESUMO

The possibility of using bioenergy as a climate change mitigation measure has sparked a discussion of whether and how bioenergy production contributes to sustainable development. We undertook a systematic review of the scientific literature to illuminate this relationship and found a limited scientific basis for policymaking. Our results indicate that knowledge on the sustainable development impacts of bioenergy production is concentrated in a few well-studied countries, focuses on environmental and economic impacts, and mostly relates to dedicated agricultural biomass plantations. The scope and methodological approaches in studies differ widely and only a small share of the studies sufficiently reports on context and/or baseline conditions, which makes it difficult to get a general understanding of the attribution of impacts. Nevertheless, we identified regional patterns of positive or negative impacts for all categories - environmental, economic, institutional, social and technological. In general, economic and technological impacts were more frequently reported as positive, while social and environmental impacts were more frequently reported as negative (with the exception of impacts on direct substitution of GHG emission from fossil fuel). More focused and transparent research is needed to validate these patterns and develop a strong science underpinning for establishing policies and governance agreements that prevent/mitigate negative and promote positive impacts from bioenergy production.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa