Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(14): 5582-7, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23509298

RESUMO

Pentatransmembrane glycoprotein prominin-1 (CD133) is expressed at the cell surface of multiple somatic stem cells, and it is widely used as a cell surface marker for the isolation and characterization of human hematopoietic stem cells (HSCs) and cancer stem cells. CD133 has been linked on a cell biological basis to stem cell-fate decisions in human HSCs and emerges as an important physiological regulator of stem cell maintenance and expansion. Its expression and physiological relevance in the murine hematopoietic system is nevertheless elusive. We show here that CD133 is expressed by bone marrow-resident murine HSCs and myeloid precursor cells with the developmental propensity to give rise to granulocytes and monocytes. However, CD133 is dispensable for the pool size and function of HSCs during steady-state hematopoiesis and after transplantation, demonstrating a substantial species difference between mouse and man. Blood cell numbers in the periphery are normal; however, CD133 appears to be a modifier for the development of growth-factor responsive myeloerythroid precursor cells in the bone marrow under steady state and mature red blood cells after hematopoietic stress. Taken together, these studies show that CD133 is not a critical regulator of hematopoietic stem cell function in mouse but that it modifies frequencies of growth-factor responsive hematopoietic progenitor cells during steady state and after myelotoxic stress in vivo.


Assuntos
Antígenos CD/metabolismo , Células da Medula Óssea/metabolismo , Glicoproteínas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células Progenitoras Mieloides/metabolismo , Peptídeos/metabolismo , Antígeno AC133 , Animais , Células da Medula Óssea/citologia , Primers do DNA/genética , Citometria de Fluxo , Imunofluorescência , Fluoruracila , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Especificidade da Espécie , Imagem com Lapso de Tempo
2.
J Biol Chem ; 286(14): 12221-33, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21278253

RESUMO

TRPM1 is the founding member of the melastatin subgroup of transient receptor potential (TRP) proteins, but it has not yet been firmly established that TRPM1 proteins form ion channels. Consequently, the biophysical and pharmacological properties of these proteins are largely unknown. Here we show that heterologous expression of TRPM1 proteins induces ionic conductances that can be activated by extracellular steroid application. However the current amplitudes observed were too small to enable a reliable biophysical characterization. We overcame this limitation by modifying TRPM1 channels in several independent ways that increased the similarity to the closely related TRPM3 channels. The resulting constructs produced considerably larger currents after overexpression. We also demonstrate that unmodified TRPM1 and TRPM3 proteins form functional heteromultimeric channels. With these approaches, we measured the divalent permeability profile and found that channels containing the pore of TRPM1 are inhibited by extracellular zinc ions at physiological concentrations, in contrast to channels containing only the pore of TRPM3. Applying these findings to pancreatic ß cells, we found that TRPM1 proteins do not play a major role in steroid-activated currents of these cells. The inhibition of TRPM1 by zinc ions is primarily due to a short stretch of seven amino acids present only in the pore region of TRPM1 but not of TRPM3. Combined, our data demonstrate that TRPM1 proteins are bona fide ion-conducting plasma membrane channels. Their distinct biophysical properties allow a reliable identification of endogenous TRPM1-mediated currents.


Assuntos
Membrana Celular/metabolismo , Canais de Cátion TRPM/metabolismo , Zinco/farmacologia , Linhagem Celular , Eletrofisiologia , Transferência Ressonante de Energia de Fluorescência , Humanos , Imunoprecipitação , Mutação , Canais de Cátion TRPM/efeitos dos fármacos , Canais de Cátion TRPM/genética
3.
J Exp Med ; 211(2): 209-15, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24446490

RESUMO

Long-term hematopoietic stem cells (HSCs [LT-HSCs]) are well known to display unpredictable differences in their clonal expansion capacities after transplantation. Here, by analyzing the cellular output after transplantation of stem cells differing in surface expression levels of the Kit receptor, we show that LT-HSCs can be systematically subdivided into two subtypes with distinct reconstitution behavior. LT-HSCs expressing intermediate levels of Kit receptor (Kit(int)) are quiescent in situ but proliferate extensively after transplantation and therefore repopulate large parts of the recipient's hematopoietic system. In contrast, metabolically active Kit(hi) LT-HSCs display more limited expansion capacities and show reduced but robust levels of repopulation after transfer. Transplantation into secondary and tertiary recipient mice show maintenance of efficient repopulation capacities of Kit(int) but not of Kit(hi) LT-HSCs. Initiation of differentiation is marked by the transit from Kit(int) to Kit(hi) HSCs, both of which precede any other known stem cell population.


Assuntos
Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Animais , Separação Celular , Ensaio de Unidades Formadoras de Colônias , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/classificação , Células-Tronco Hematopoéticas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa