Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Bacteriol ; 203(4)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33288625

RESUMO

Characterizing the mycobacterial transporters involved in the uptake and/or catabolism of host-derived nutrients required by mycobacteria may identify novel drug targets against tuberculosis. Here, we identify and characterize a member of the amino acid-polyamine-organocation superfamily, a potential γ-aminobutyric acid (GABA) transport protein, GabP, from Mycobacterium smegmatis The protein was expressed to a level allowing its purification to homogeneity, and size exclusion chromatography coupled with multiangle laser light scattering (SEC-MALLS) analysis of the purified protein showed that it was dimeric. We showed that GabP transported γ-aminobutyric acid both in vitro and when overexpressed in E. coli Additionally, transport was greatly reduced in the presence of ß-alanine, suggesting it could be either a substrate or inhibitor of GabP. Using GabP reconstituted into proteoliposomes, we demonstrated that γ-aminobutyric acid uptake is driven by the sodium gradient and is stimulated by membrane potential. Molecular docking showed that γ-aminobutyric acid binds MsGabP, another Mycobacterium smegmatis putative GabP, and the Mycobacterium tuberculosis homologue in the same manner. This study represents the first expression, purification, and characterization of an active γ-aminobutyric acid transport protein from mycobacteria.IMPORTANCE The spread of multidrug-resistant tuberculosis increases its global health impact in humans. As there is transmission both to and from animals, the spread of the disease also increases its effects in a broad range of animal species. Identifying new mycobacterial transporters will enhance our understanding of mycobacterial physiology and, furthermore, provides new drug targets. Our target protein is the gene product of msmeg_6196, annotated as GABA permease, from Mycobacterium smegmatis strain MC2 155. Our current study demonstrates it is a sodium-dependent GABA transporter that may also transport ß-alanine. As GABA may well be an essential nutrient for mycobacterial metabolism inside the host, this could be an attractive target for the development of new drugs against tuberculosis.


Assuntos
Proteínas de Bactérias/metabolismo , Transporte Biológico/fisiologia , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Mycobacterium smegmatis/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Sódio/metabolismo , Ácido gama-Aminobutírico/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Regulação Bacteriana da Expressão Gênica , Metabolômica , Simulação de Acoplamento Molecular , Transportadores de Ânions Orgânicos/genética , Filogenia , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/genética
2.
Biochem Soc Trans ; 47(4): 1197-1207, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31383819

RESUMO

Glutamate transporters play important roles in bacteria, archaea and eukaryotes. Their function in the mammalian central nervous system is essential for preventing excitotoxicity, and their dysregulation is implicated in many diseases, such as epilepsy and Alzheimer's. Elucidating their transport mechanism would further the understanding of these transporters and promote drug design as they provide compelling targets for understanding the pathophysiology of diseases and may have a direct role in the treatment of conditions involving glutamate excitotoxicity. This review outlines the insights into the transport cycle, uncoupled chloride conductance and modulation, as well as identifying areas that require further investigation.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Archaea/metabolismo , Sistema X-AG de Transporte de Aminoácidos/química , Ácido Aspártico/metabolismo , Sítios de Ligação , Cloretos/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Potássio/metabolismo , Conformação Proteica , Sódio/metabolismo
3.
Biochim Biophys Acta Biomembr ; 1860(2): 378-383, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28993151

RESUMO

The field of membrane protein structural biology has been revolutionized over the last few years with a number of high profile structures being solved using cryo-EM including Piezo, Ryanodine receptor, TRPV1 and the Glutamate receptor. Further developments in the EM field hold the promise of even greater progress in terms of greater resolution, which for membrane proteins is still typically within the 4-7Å range. One advantage of a cryo-EM approach is the ability to study membrane proteins in more "native" like environments for example proteoliposomes, amphipols and nanodiscs. Recently, styrene maleic acid co-polymers (SMA) have been used to extract membrane proteins surrounded by native lipids (SMALPs) maintaining a more natural environment. We report here the structure of the Escherichia coli multidrug efflux transporter AcrB in a SMALP scaffold to sub-nm resolution, with the resulting map being consistent with high resolution crystal structures and other EM derived maps. However, both the C-terminal helix (TM12) and TM7 are poorly defined in the map. These helices are at the exterior of the helical bundle and form the greater interaction with the native lipids and SMA polymer and may represent a more dynamic region of the protein. This work shows the promise of using an SMA approach for single particle cryo-EM studies to provide sub-nm structures.


Assuntos
Microscopia Crioeletrônica/métodos , Bicamadas Lipídicas/química , Maleatos/química , Proteínas de Membrana/química , Poliestirenos/química , Cristalografia por Raios X , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Proteínas de Membrana/ultraestrutura , Modelos Moleculares , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/ultraestrutura , Conformação Proteica , Multimerização Proteica , Proteolipídeos/química , Proteolipídeos/ultraestrutura
4.
Biochem Soc Trans ; 44(3): 898-904, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27284058

RESUMO

Glutamate transporters are responsible for uptake of the neurotransmitter glutamate in mammalian central nervous systems. Their archaeal homologue GltPh, an aspartate transporter isolated from Pyrococcus horikoshii, has been the focus of extensive studies through crystallography, MD simulations and single-molecule FRET (smFRET). Here, we summarize the recent research progress on GltPh, in the hope of gaining some insights into the transport mechanism of this aspartate transporter.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Pyrococcus horikoshii/metabolismo , Ácido Aspártico/metabolismo , Transporte Biológico , Conformação Proteica , Especificidade por Substrato
5.
Biochem Soc Trans ; 44(3): 877-82, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27284055

RESUMO

Membrane proteins represent one of the most important targets for pharmaceutical companies. Unfortunately, technical limitations have long been a major hindrance in our understanding of the function and structure of such proteins. Recent years have seen the refinement of classical approaches and the emergence of new technologies that have resulted in a significant step forward in the field of membrane protein research. This review summarizes some of the current techniques used for studying membrane proteins, with overall advantages and drawbacks for each method.


Assuntos
Proteínas de Membrana/isolamento & purificação , Membranas Artificiais , Métodos , Bactérias/metabolismo , Eucariotos/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia
6.
Proc Natl Acad Sci U S A ; 110(4): 1279-84, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23288899

RESUMO

Peroxisomes are organelles that perform diverse metabolic functions in different organisms, but a common function is ß-oxidation of a variety of long chain aliphatic, branched, and aromatic carboxylic acids. Import of substrates into peroxisomes for ß-oxidation is mediated by ATP binding cassette (ABC) transporter proteins of subfamily D, which includes the human adrenoleukodystropy protein (ALDP) defective in X-linked adrenoleukodystrophy (X-ALD). Whether substrates are transported as CoA esters or free acids has been a matter of debate. Using COMATOSE (CTS), a plant representative of the ABCD family, we demonstrate that there is a functional and physical interaction between the ABC transporter and the peroxisomal long chain acyl-CoA synthetases (LACS)6 and -7. We expressed recombinant CTS in insect cells and showed that membranes from infected cells possess fatty acyl-CoA thioesterase activity, which is stimulated by ATP. A mutant, in which Serine 810 is replaced by asparagine (S810N) is defective in fatty acid degradation in vivo, retains ATPase activity but has strongly reduced thioesterase activity, providing strong evidence for the biological relevance of this activity. Thus, CTS, and most likely the other ABCD family members, represent rare examples of polytopic membrane proteins with an intrinsic additional enzymatic function that may regulate the entry of substrates into the ß-oxidation pathway. The cleavage of CoA raises questions about the side of the membrane where this occurs and this is discussed in the context of the peroxisomal coenzyme A (CoA) budget.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Tioléster Hidrolases/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Acil Coenzima A/metabolismo , Adenosina Trifosfatases , Substituição de Aminoácidos , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico Ativo , Coenzima A Ligases/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Humanos , Modelos Biológicos , Mutagênese Sítio-Dirigida , Peroxissomos/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tioléster Hidrolases/genética
7.
EMBO J ; 30(2): 417-26, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21131908

RESUMO

PepT1 and PepT2 are major facilitator superfamily (MFS) transporters that utilize a proton gradient to drive the uptake of di- and tri-peptides in the small intestine and kidney, respectively. They are the major routes by which we absorb dietary nitrogen and many orally administered drugs. Here, we present the crystal structure of PepT(So), a functionally similar prokaryotic homologue of the mammalian peptide transporters from Shewanella oneidensis. This structure, refined using data up to 3.6 Å resolution, reveals a ligand-bound occluded state for the MFS and provides new insights into a general transport mechanism. We have located the peptide-binding site in a central hydrophilic cavity, which occludes a bound ligand from both sides of the membrane. Residues thought to be involved in proton coupling have also been identified near the extracellular gate of the cavity. Based on these findings and associated kinetic data, we propose that PepT(So) represents a sound model system for understanding mammalian peptide transport as catalysed by PepT1 and PepT2.


Assuntos
Modelos Moleculares , Shewanella/genética , Simportadores/ultraestrutura , Sítios de Ligação/genética , Cristalografia , Transportador 1 de Peptídeos , Simportadores/genética
9.
Mol Membr Biol ; 30(2): 114-28, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23256604

RESUMO

Nucleosides play key roles in biology as precursors for salvage pathways of nucleotide synthesis. Prokaryotes import nucleosides across the cytoplasmic membrane by proton- or sodium-driven transporters belonging to the Concentrative Nucleoside Transporter (CNT) family or the Nucleoside:H(+) Symporter (NHS) family of the Major Facilitator Superfamily. The high resolution structure of a CNT from Vibrio cholerae has recently been determined, but no similar structural information is available for the NHS family. To gain a better understanding of the molecular mechanism of nucleoside transport, in the present study the structures of two conformations of the archetypical NHS transporter NupG from Escherichia coli were modelled on the inward- and outward-facing conformations of the lactose transporter LacY from E. coli, a member of the Oligosaccharide:H(+) Symporter (OHS) family. Sequence alignment of these distantly related proteins (∼ 10% sequence identity), was facilitated by comparison of the patterns of residue conservation within the NHS and OHS families. Despite the low sequence similarity, the accessibilities of endogenous and introduced cysteine residues to thiol reagents were found to be consistent with the predictions of the models, supporting their validity. For example C358, located within the predicted nucleoside binding site, was shown to be responsible for the sensitivity of NupG to inhibition by p-chloromercuribenzene sulphonate. Functional analysis of mutants in residues predicted by the models to be involved in the translocation mechanism, including Q261, E264 and N228, supported the hypothesis that they play important roles, and suggested that the transport mechanisms of NupG and LacY, while different, share common features.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Nucleosídeos/química , Proteínas de Transporte de Nucleosídeos/metabolismo , Nucleosídeos/química , Nucleosídeos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Transporte Biológico , Cisteína/genética , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação , Proteínas de Transporte de Nucleosídeos/genética , Nucleosídeos/genética , Alinhamento de Sequência , Simportadores/química , Simportadores/genética , Simportadores/metabolismo
10.
Biochem J ; 445(2): 157-66, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22553922

RESUMO

Urea is exploited as a nitrogen source by bacteria, and its breakdown products, ammonia and bicarbonate, are employed to counteract stomach acidity in pathogens such as Helicobacter pylori. Uptake in the latter is mediated by UreI, a UAC (urea amide channel) family member. In the present paper, we describe the structure and function of UACBc, a homologue from Bacillus cereus. The purified channel was found to be permeable not only to urea, but also to other small amides. CD and IR spectroscopy revealed a structure comprising mainly α-helices, oriented approximately perpendicular to the membrane. Consistent with this finding, site-directed fluorescent labelling indicated the presence of seven TM (transmembrane) helices, with a cytoplasmic C-terminus. In detergent, UACBc exists largely as a hexamer, as demonstrated by both cross-linking and size-exclusion chromatography. A 9 Å (1 Å=0.1 nm) resolution projection map obtained by cryo-electron microscopy of two-dimensional crystals shows that the six protomers are arranged in a planar hexameric ring. Each exhibits six density features attributable to TM helices, surrounding a putative central channel, while an additional helix is peripherally located. Bioinformatic analyses allowed individual TM regions to be tentatively assigned to the density features, with the resultant model enabling identification of residues likely to contribute to channel function.


Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/química , Canais Iônicos/química , Proteínas de Membrana Transportadoras/química , Ureia/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Canais Iônicos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Ureia/química
11.
J Struct Biol ; 176(3): 419-24, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21964467

RESUMO

Contamination with the multidrug transporter AcrB represents a potential pitfall in the structural analysis of recombinant membrane proteins expressed in Escherichia coli, especially when high-throughput approaches are adopted. This can be a particular problem in two-dimensional (2-D) crystallization for electron cryomicroscopy since individual crystals are too small for compositional analysis. Using a broad 'sparse matrix' of buffer conditions typically used in 2-D crystallization, we have identified at least eight unique crystal forms of AcrB. Reference to images and projection maps of these different forms can greatly facilitate the early identification of false leads in 2-D crystallization trials of other membrane proteins of interest. We illustrate the usefulness of such data by highlighting two studies of membrane proteins in our laboratories. We show in one case (a bacterial sodium channel, NaChBac) how early crystallization 'hits' could be attributed to contaminating AcrB by comparison against our AcrB crystal image database. In a second case, involving a member of the monovalent cation/proton antiporter-1 family (MPSIL0171), a comparison with the observed AcrB crystal forms allowed easy identification of reconstituted AcrB particles, greatly facilitating the eventual purification and crystallization of the correct protein in pure form as ordered helical arrays. Our database of AcrB crystal images will be of general use in assisting future 2-D crystallization studies of other membrane proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Canais de Sódio/química , Cátions Monovalentes/química , Cristalização/métodos , Cristalografia por Raios X
12.
Commun Biol ; 4(1): 1337, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824357

RESUMO

Membrane proteins are essential for cellular growth, signalling and homeostasis, making up a large proportion of therapeutic targets. However, the necessity for a solubilising agent to extract them from the membrane creates challenges in their structural and functional study. Although amphipols have been very effective for single-particle electron cryo-microscopy (cryoEM) and mass spectrometry, they rely on initial detergent extraction before exchange into the amphipol environment. Therefore, circumventing this pre-requirement would be a big advantage. Here we use an alternative type of amphipol: a cycloalkane-modified amphiphile polymer (CyclAPol) to extract Escherichia coli AcrB directly from the membrane and demonstrate that the protein can be isolated in a one-step purification with the resultant cryoEM structure achieving 3.2 Å resolution. Together this work shows that cycloalkane amphipols provide a powerful approach for the study of membrane proteins, allowing native extraction and high-resolution structure determination by cryoEM.


Assuntos
Microscopia Crioeletrônica/métodos , Cicloparafinas/química , Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli/fisiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/isolamento & purificação , Polímeros/química , Microscopia Crioeletrônica/instrumentação
13.
Membranes (Basel) ; 10(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987882

RESUMO

Transition metals are essential trace elements and their high-affinity uptake is required for many organisms. Metal transporters are often characterised using metal-sensitive fluorescent dyes, limiting the metals and experimental conditions that can be studied. Here, we have tested whether metal transport by Enterococcus faecalis MntH2 can be measured with an electrophysiology method that is based on the solid-supported membrane technology. E. faecalis MntH2 belongs to the Natural Resistance-Associated Macrophage Protein (Nramp) family of proton-coupled transporters, which transport divalent transition metals and do not transport the earth metals. Electrophysiology confirms transport of Mn(II), Co(II), Zn(II) and Cd(II) by MntH2. However, no uptake responses for Cu(II), Fe(II) and Ni(II) were observed, while the presence of these metals abolishes the uptake signals for Mn(II). Fluorescence assays confirm that Ni(II) is transported. The data are discussed with respect to properties and structures of Nramp-type family members and the ability of electrophysiology to measure charge transport and not directly substrate transport.

14.
Methods Mol Biol ; 2168: 3-49, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33582985

RESUMO

A major obstacle to studying membrane proteins by biophysical techniques is the difficulty in producing sufficient amounts of materials for functional and structural studies. To overexpress the target membrane protein heterologously, especially an eukaryotic protein, a key step is to find the optimal host expression system and perform subsequent expression optimization. In this chapter, we describe protocols for screening membrane protein production using bacterial and insect cells, solubilization screening, large-scale production, and commonly used affinity chromatography purification methods. We discuss general optimization conditions, such as promoters and tags, and describe current techniques that can be used in any laboratory without specialized expensive equipment. Especially for insect cells, GFP fusions are particularly useful for localization and in-gel fluorescence detection of the proteins on SDS-PAGE. We give detailed protocols that can be used to screen the best expression and purification conditions for membrane protein study.


Assuntos
Cromatografia de Afinidade/métodos , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Animais , Escherichia coli/crescimento & desenvolvimento , Vetores Genéticos , Humanos , Células Sf9
15.
Biochim Biophys Acta Biomembr ; 1862(5): 183192, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31945320

RESUMO

Membrane proteins are traditionally extracted and purified in detergent for biochemical and structural characterisation. This process is often costly and laborious, and the stripping away of potentially stabilising lipids from the membrane protein of interest can have detrimental effects on protein integrity. Recently, styrene-maleic acid (SMA) co-polymers have offered a solution to this problem by extracting membrane proteins directly from their native membrane, while retaining their naturally associated lipids in the form of stable SMA lipid particles (SMALPs). However, the inherent nature and heterogeneity of the polymer renders their use challenging for some downstream applications - particularly mass spectrometry (MS). While advances in cryo-electron microscopy (cryo-EM) have enhanced our understanding of membrane protein:lipid interactions in both SMALPs and detergent, the resolution obtained with this technique is often insufficient to accurately identify closely associated lipids within the transmembrane annulus. Native-MS has the power to fill this knowledge gap, but the SMA polymer itself remains largely incompatible with this technique. To increase sample homogeneity and allow characterisation of membrane protein:lipid complexes by native-MS, we have developed a novel SMA-exchange method; whereby the membrane protein of interest is first solubilised and purified in SMA, then transferred into amphipols or detergents. This allows the membrane protein and endogenously associated lipids extracted by SMA co-polymer to be identified and examined by MS, thereby complementing results obtained by cryo-EM and creating a better understanding of how the lipid bilayer directly affects membrane protein structure and function.


Assuntos
Maleatos/química , Lipídeos de Membrana/isolamento & purificação , Proteínas de Membrana/isolamento & purificação , Poliestirenos/química , Microscopia Crioeletrônica/métodos , Detergentes , Escherichia coli/química , Proteínas de Escherichia coli/química , Bicamadas Lipídicas/química , Gotículas Lipídicas/química , Espectrometria de Massas/métodos , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Polímeros/química
16.
Microorganisms ; 8(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585951

RESUMO

Salmonella is an important genus of Gram-negative pathogens, treatment of which has become problematic due to increases in antimicrobial resistance. This is partly attributable to the overexpression of tripartite efflux pumps, particularly the constitutively expressed AcrAB-TolC. Despite its clinical importance, the structure of the Salmonella AcrB transporter remained unknown to-date, with much of our structural understanding coming from the Escherichia coli orthologue. Here, by taking advantage of the styrene maleic acid (SMA) technology to isolate membrane proteins with closely associated lipids, we report the very first experimental structure of Salmonella AcrB transporter. Furthermore, this novel structure provides additional insight into mechanisms of drug efflux as it bears the mutation (G288D), originating from a clinical isolate of Salmonella Typhimurium presenting an increased resistance to fluoroquinolones. Experimental data are complemented by state-of-the-art molecular dynamics (MD) simulations on both the wild type and G288D variant of Salmonella AcrB. Together, these reveal several important differences with respect to the E. coli protein, providing insights into the role of the G288D mutation in increasing drug efflux and extending our understanding of the mechanisms underlying antibiotic resistance.

17.
Mol Membr Biol ; 25(8): 609-16, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19021076

RESUMO

The preparation of cell membranes by ultracentrifugation of bacterial cell lysates, a pre-requisite for the purification of over-expressed membrane proteins, is both time-consuming and difficult to perform on a large scale. To overcome this bottleneck in the structural investigation of such proteins in the UK Membrane Protein Structure Initiative, we have investigated the alternative use of tangential flow filtration for preparation of membranes from Escherichia coli. This method proved to be superior to the conventional use of ultracentrifuges both in speed and in yield of membrane protein. Moreover, it could more readily be scaled up to process larger quantities of bacterial cells. Comparison of the purity and monodispersity of an over-expressed membrane protein purified from conventionally-prepared membranes and from membranes prepared by filtration revealed no substantial differences. The approach described should therefore be of general use for membrane protein preparation for a wide range of applications, including both structural and functional studies.


Assuntos
Membrana Celular , Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli/ultraestrutura , Proteínas de Membrana/isolamento & purificação , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Cromatografia em Gel , Escherichia coli/química , Proteínas de Escherichia coli/biossíntese , Filtração/instrumentação , Filtração/métodos , Proteínas de Membrana/biossíntese , Filtros Microporos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Reprodutibilidade dos Testes , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/biossíntese , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/isolamento & purificação , Ultracentrifugação
18.
Mol Membr Biol ; 25(8): 588-98, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19023695

RESUMO

The production of well-ordered crystals of membrane proteins for structural investigation by X-ray diffraction typically requires extensive crystallization trials and may involve the screening of multiple detergents, lipids and other additives. Purification of sufficient amounts of protein for such trials is hampered by the fact that even when over-expressed, membrane proteins represent only a small percentage of the total protein content of bacteria. Fermentation-scale cultures of cells are therefore usually required. To maximize the efficiency and reduce the cost of such cultures, in the UK Membrane Protein Structure Initiative we have systematically investigated the use of auto-induction as an alternative to induction of expression with isopropyl-beta-D-thiogalactoside. We report here the benefits of first optimizing expression on a multiwell plate scale by systematically varying the concentrations of glucose, glycerol, lactose and succinate present in the auto-induction medium. For subsequent scale-up, comparison of isopropyl-beta-D-thiogalactoside induction in shake-flasks with auto-induction in shake-flasks and in 1L fermenters without and with control of pH and aeration revealed that highest yields of target protein were obtained using the latter culture conditions. However, analysis of the time-course of expression highlighted the importance of choosing the correct time for harvest. The high yields of target protein that can be obtained in a single batch by auto-induction, performed on a 30 l scale in a fermenter, obviate batch-to-batch variations that can add an unwanted variable to crystallization screening experiments. The approach described should therefore be of great utility for membrane protein production for structural studies.


Assuntos
Proteínas de Membrana/biossíntese , Reatores Biológicos , Cristalografia por Raios X , Meios de Cultura , Fermentação , Glucose/metabolismo , Glicerol/metabolismo , Concentração de Íons de Hidrogênio , Isopropiltiogalactosídeo/metabolismo , Lactose/metabolismo , Oxigênio/metabolismo , Projetos Piloto , Proteínas Recombinantes/biossíntese , Ativação Transcricional
19.
Mol Membr Biol ; 25(8): 691-705, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19039703

RESUMO

The toxic metalloid arsenic is an abundant element and most organisms possess transport systems involved in its detoxification. One such family of arsenite transporters, the ACR3 family, is widespread in fungi and bacteria. To gain a better understanding of the molecular mechanism of arsenic transport, we report here the expression and characterization of a family member, So_ACR3, from the bacterium Shewanella oneidensis MR-1. Surprisingly, expression of this transporter in the arsenic-hypersensitive Escherichia coli strain AW3110 conferred resistance to arsenate, but not to arsenite. Purification of a C-terminally His-tagged form of the protein allowed the binding of putative permeants to be directly tested: arsenate but not arsenite quenched its intrinsic fluorescence in a concentration-dependent fashion. Fourier transform infrared spectroscopy showed that the purified protein was predominantly alpha-helical. A mutant bearing a single cysteine residue at position 3 retained the ability to confer arsenate resistance, and was accessible to membrane impermeant thiol reagents in intact cells. In conjunction with successful C-terminal tagging with oligohistidine, this finding is consistent with the experimentally-determined topology of the homologous human apical sodium-dependent bile acid transporter, namely 7 transmembrane helices and a periplasmic N-terminus, although the presence of additional transmembrane segments cannot be excluded. Mutation to alanine of the conserved residue proline 190, in the fourth putative transmembrane region, abrogated the ability of the transporter to confer arsenic resistance, but did not prevent arsenate binding. An apparently increased thermal stability is consistent with the mutant being unable to undergo the conformational transitions required for permeant translocation.


Assuntos
Arsenicais/metabolismo , Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Shewanella/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Transporte Biológico , Clonagem Molecular , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/fisiologia , Mutagênese Sítio-Dirigida , Filogenia , Desnaturação Proteica , Estabilidade Proteica , Shewanella/genética , Shewanella/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
20.
Mol Membr Biol ; 25(8): 617-24, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19016381

RESUMO

The preparation of purified, detergent-solubilized membrane proteins in a monodisperse and stable form is usually a prerequisite for investigation not only of their function but also for structural studies by X-ray crystallography and other approaches. Typically, it is necessary to explore a wide range of conditions, including detergent type, buffer pH, and the presence of additives such as glycerol, in order to identify those optimal for stability. Given the difficulty of expressing and purifying membrane proteins in large amounts, such explorations must ideally be performed on as small a scale as practicable. To achieve this objective in the UK Membrane Protein Structure Initiative, we have developed a rapid, economical, light-scattering assay of membrane protein aggregation that allows the testing of 48 buffer conditions in parallel on 6 protein targets, requiring less than 2 mg protein for each target. Testing of the assay on a number of unrelated membrane transporters has shown that it is of generic applicability. Proteins of sufficient purity for this plate-based assay are first rapidly prepared using simple affinity purification procedures performed in batch mode. Samples are then transferred by microdialysis into each of the conditions to be tested. Finally, attenuance at 340 nm is monitored in a 384-well plate using a plate reader. Optimal conditions for protein stability identified in the assay can then be exploited for the tailored purification of individual targets in as stable a form as possible.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Estabilidade Proteica , Soluções Tampão , Cromatografia em Gel , Clonagem Molecular , Cristalização , Meios de Cultura , Detergentes , Proteínas de Escherichia coli/isolamento & purificação , Glicerol , Concentração de Íons de Hidrogênio , Luz , Proteínas de Membrana Transportadoras/isolamento & purificação , Microdiálise , Estrutura Quaternária de Proteína , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa