Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34556572

RESUMO

Light provides the primary signal for entraining circadian rhythms to the day/night cycle. In addition to rods and cones, the retina contains a small population of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). Concerns have been raised that exposure to dim artificial lighting in the evening (DLE) may perturb circadian rhythms and sleep patterns, and OPN4 is presumed to mediate these effects. Here, we examine the effects of 4-h, 20-lux DLE on circadian physiology and behavior in mice and the role of OPN4 in these responses. We show that 2 wk of DLE induces a phase delay of ∼2 to 3 h in mice, comparable to that reported in humans. DLE-induced phase shifts are unaffected in Opn4-/- mice, indicating that rods and cones are capable of driving these responses in the absence of melanopsin. DLE delays molecular clock rhythms in the heart, liver, adrenal gland, and dorsal hippocampus. It also reverses short-term recognition memory performance, which is associated with changes in preceding sleep history. In addition, DLE modifies patterns of hypothalamic and cortical cFos signals, a molecular correlate of recent neuronal activity. Together, our data show that DLE causes coordinated realignment of circadian rhythms, sleep patterns, and short-term memory process in mice. These effects are particularly relevant as DLE conditions-due to artificial light exposure-are experienced by the majority of the populace on a daily basis.


Assuntos
Ritmo Circadiano , Luz , Memória de Curto Prazo/fisiologia , Células Ganglionares da Retina/fisiologia , Opsinas de Bastonetes/fisiologia , Sono/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Ganglionares da Retina/citologia
2.
FASEB J ; 35(9): e21802, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34383984

RESUMO

Mutations in transcription factors often exhibit pleiotropic effects related to their complex expression patterns and multiple regulatory targets. One such mutation in the zinc finger homeobox 3 (ZFHX3) transcription factor, short circuit (Sci, Zfhx3Sci/+ ), is associated with significant circadian deficits in mice. However, given evidence of its retinal expression, we set out to establish the effects of the mutation on retinal function using molecular, cellular, behavioral and electrophysiological measures. Immunohistochemistry confirms the expression of ZFHX3 in multiple retinal cell types, including GABAergic amacrine cells and retinal ganglion cells including intrinsically photosensitive retinal ganglion cells (ipRGCs). Zfhx3Sci/+ mutants display reduced light responsiveness in locomotor activity and circadian entrainment, relatively normal electroretinogram and optomotor responses but exhibit an unexpected pupillary reflex phenotype with markedly increased sensitivity. Furthermore, multiple electrode array recordings of Zfhx3Sci/+ retina show an increased sensitivity of ipRGC light responses.


Assuntos
Ritmo Circadiano/fisiologia , Proteínas de Homeodomínio/metabolismo , Retina/metabolismo , Células Amácrinas/metabolismo , Animais , Luz , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa/métodos , Células Ganglionares da Retina/metabolismo , Visão Ocular/fisiologia
3.
Hum Mol Genet ; 27(15): 2589-2603, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718372

RESUMO

Melanopsin (OPN4) is an opsin photopigment expressed within intrinsically photosensitive retinal ganglion cells (ipRGCs) that mediate non-image forming (NIF) responses to light. Two single-nucleotide polymorphisms (SNPs) in human melanopsin (hOPN4), Pro10Leu and Thr394Ile, have recently been associated with abnormal NIF responses to light, including seasonal affective disorder. It has been suggested these behavioural changes are due to altered melanopsin signalling. However, there is currently no direct evidence to support this. Here we have used ipRGC-specific delivery of hOPN4 wild-type (WT), Pro10Leu or Thr394Ile adeno-associated viruses (AAV) to determine the functional consequences of hOPN4 SNPs on melanopsin-driven light responses and associated behaviours. Immunohistochemistry confirmed hOPN4 AAVs exclusively transduced mouse ipRGCs. Behavioural phenotyping performed before and after AAV injection demonstrated that both hOPN4 Pro10Leu and Thr394Ile could functionally rescue pupillary light responses and circadian photoentrainment in Opn4-/- mice, with no differences in NIF behaviours detected for animals expressing either SNP compared to hOPN4 WT. Multi-electrode array recordings revealed that ipRGCs expressing hOPN4 Thr394Ile exhibit melanopsin-driven light responses with significantly attenuated response amplitude, decreased sensitivity and faster offset kinetics compared to hOPN4 WT. IpRGCs expressing hOpn4 Pro10Leu also showed reduced response amplitude. Collectively these data suggest Thr394Ile and Pro10Leu may be functionally significant SNPs, which result in altered melanopsin signalling. To our knowledge, this study provides the first direct evidence for the effects of hOPN4 polymorphisms on melanopsin-driven light responses and NIF behaviours in vivo, providing further insight into the role of these SNPs in melanopsin function and human physiology.


Assuntos
Polimorfismo de Nucleotídeo Único , Células Ganglionares da Retina/fisiologia , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo , Animais , Dependovirus/genética , Regulação da Expressão Gênica , Humanos , Luz , Transdução de Sinal Luminoso , Camundongos Mutantes , Camundongos Transgênicos , Mutação de Sentido Incorreto , Pupila/fisiologia
4.
FASEB J ; 32(8): 4302-4314, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29561690

RESUMO

Cryptochromes 1 and 2 (CRY1/2) are key components of the negative limb of the mammalian circadian clock. Like many peripheral tissues, Cry1 and -2 are expressed in the retina, where they are thought to play a role in regulating rhythmic physiology. However, studies differ in consensus as to their localization and function, and CRY1 immunostaining has not been convincingly demonstrated in the retina. Here we describe the expression and function of CRY1 and -2 in the mouse retina in both sexes. Unexpectedly, we show that CRY1 is expressed throughout all retinal layers, whereas CRY2 is restricted to the photoreceptor layer. Retinal period 2::luciferase recordings from CRY1-deficient mice show reduced clock robustness and stability, while those from CRY2-deficient mice show normal, albeit long-period, rhythms. In functional studies, we then investigated well-defined rhythms in retinal physiology. Rhythms in the photopic electroretinogram, contrast sensitivity, and pupillary light response were all severely attenuated or abolished in CRY1-deficient mice. In contrast, these physiological rhythms are largely unaffected in mice lacking CRY2, and only photopic electroretinogram rhythms are affected. Together, our data suggest that CRY1 is an essential component of the mammalian retinal clock, whereas CRY2 has a more limited role.-Wong, J. C. Y., Smyllie, N. J., Banks, G. T., Pothecary, C. A., Barnard, A. R., Maywood, E. S., Jagannath, A., Hughes, S., van der Horst, G. T. J., MacLaren, R. E., Hankins, M. W., Hastings, M. H., Nolan, P. M., Foster, R. G., Peirson, S. N. Differential roles for cryptochromes in the mammalian retinal clock.


Assuntos
Criptocromos/metabolismo , Mamíferos/metabolismo , Mamíferos/fisiologia , Retina/metabolismo , Retina/fisiologia , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Eletrorretinografia/métodos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/fisiologia
5.
PLoS Biol ; 14(6): e1002482, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27276063

RESUMO

Light plays a critical role in the regulation of numerous aspects of physiology and behaviour, including the entrainment of circadian rhythms and the regulation of sleep. These responses involve melanopsin (OPN4)-expressing photosensitive retinal ganglion cells (pRGCs) in addition to rods and cones. Nocturnal light exposure in rodents has been shown to result in rapid sleep induction, in which melanopsin plays a key role. However, studies have also shown that light exposure can result in elevated corticosterone, a response that is not compatible with sleep. To investigate these contradictory findings and to dissect the relative contribution of pRGCs and rods/cones, we assessed the effects of light of different wavelengths on behaviourally defined sleep. Here, we show that blue light (470 nm) causes behavioural arousal, elevating corticosterone and delaying sleep onset. By contrast, green light (530 nm) produces rapid sleep induction. Compared to wildtype mice, these responses are altered in melanopsin-deficient mice (Opn4-/-), resulting in enhanced sleep in response to blue light but delayed sleep induction in response to green or white light. We go on to show that blue light evokes higher Fos induction in the SCN compared to the sleep-promoting ventrolateral preoptic area (VLPO), whereas green light produced greater responses in the VLPO. Collectively, our data demonstrates that nocturnal light exposure can have either an arousal- or sleep-promoting effect, and that these responses are melanopsin-mediated via different neural pathways with different spectral sensitivities. These findings raise important questions relating to how artificial light may alter behaviour in both the work and domestic setting.


Assuntos
Nível de Alerta/efeitos da radiação , Luz , Opsinas de Bastonetes/metabolismo , Sono/efeitos da radiação , Animais , Nível de Alerta/fisiologia , Corticosterona/sangue , Corticosterona/metabolismo , Expressão Gênica/efeitos da radiação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Proteínas Circadianas Period/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Área Pré-Óptica/metabolismo , Área Pré-Óptica/efeitos da radiação , Proteínas Proto-Oncogênicas c-fos/genética , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos da radiação , Opsinas de Bastonetes/genética , Sono/fisiologia , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/efeitos da radiação , Fatores de Tempo
6.
Hum Mol Genet ; 25(24)2016 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28031289

RESUMO

Circadian deficits in Huntington's disease (HD) are recapitulated in both fragment (R6/2) and full-length (Q175) mouse models of HD. Circadian rhythms are regulated by the suprachiasmatic nuclei (SCN) in the hypothalamus, which are primarily entrained by light detected by the retina. The SCN receives input from intrinsically photosensitive retinal ganglion cells (ipRGCs) that express the photopigment melanopsin, but also receive input from rods and cones. In turn, ipRGCs mediate a range of non-image forming responses to light including circadian entrainment and the pupillary light response (PLR). Retinal degeneration/dysfunction has been described previously in R6/2 mice. We investigated, therefore, whether or not circadian disruption in HD mice is due to abnormalities in retinal photoreception. We measured the expression of melanopsin, rhodopsin and cone opsin, as well as other retinal markers (tyrosine hydroxylase, calbindin, PKCα and Brna3), in R6/2 and Q175 mice at different stages of disease. We also measured the PLR as a 'readout' for ipRGC function and a marker of light reception by the retina. We found that the PLR was attenuated in both lines of HD mice. This was accompanied by a progressive downregulation of cone opsin and melanopsin expression. We suggest that disease-related changes in photoreception by the retina contribute to the progressive dysregulation of circadian rhythmicity and entrainment seen in HD mice. Colour vision is abnormal in HD patients. Therefore, if retinal deficits similar to those seen in HD mice are confirmed in patients, specifically designed light therapy may be an effective strategy to improve circadian dysfunction.

7.
Eur J Neurosci ; 35(1): 34-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22211741

RESUMO

TRPM1 is a spontaneously active non-selective cation channel that has recently been shown to play an important role in the depolarizing light responses of ON bipolar cells. Consistent with this role, mutations in the TRPM1 gene have been identified as a principal cause of congenital stationary night blindness. However, previous microarray studies have shown that Trpm1 and Trpm3 are acutely regulated by light in the eyes of mice lacking rods and cones (rd/rd cl), a finding consistent with a role in non-image-forming photoreception. In this study we show that pupillary light responses are significantly attenuated in both Trpm1(-/-) and Trpm3(-/-) animals. Trpm1(-/-) mice exhibit a profound deficit in the pupillary response that is far in excess of that observed in mice lacking rods and cones (rd/rd cl) or melanopsin, and cannot be explained by defects in bipolar cell function alone. Immunolocalization studies suggest that TRPM1 is expressed in ON bipolar cells and also a subset of cells in the ganglion cell layer, including melanopsin-expressing photosensitive retinal ganglion cells (pRGCs). We conclude that, in addition to its role in bipolar cell signalling, TRPM1 is involved in non-image-forming responses to light and may perform a functional role within pRGCs. By contrast, TRPM3(-/-) mice display a more subtle pupillary phenotype with attenuated responses under bright light and dim light conditions. Expression of TRPM3 is detected in Muller cells and the ciliary body but is absent from pRGCs, and thus our data support an indirect role for TRPM3 in pupillary light responses.


Assuntos
Luz , Reflexo Pupilar/fisiologia , Canais de Cátion TRPM/metabolismo , Visão Ocular/fisiologia , Animais , Camundongos , Camundongos Knockout , Análise em Microsséries , Retina/citologia , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo , Canais de Cátion TRPM/genética
8.
Prog Brain Res ; 273(1): 97-116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35940726

RESUMO

Over the last decades remarkable advances have been made in the understanding of the photobiology of circadian rhythms. The identification of a third photoreceptive system in the mammalian eye, in addition to the rods and cones that mediate vision, has transformed our appreciation of the role of light in regulating physiology and behavior. These photosensitive retinal ganglion cells (pRGCs) express the blue-light sensitive photopigment melanopsin and project to the suprachiasmatic nuclei (SCN)-the master circadian pacemaker-as well as many other brain regions. Much of our understanding of the fundamental mechanisms of the pRGCs, and the processes that they regulate, comes from mouse and other rodent models. Here we describe the contribution of rodent models to circadian photobiology, including both their strengths and limitations. In addition, we discuss how an appreciation of both rodent and human data is important for translational circadian photobiology. Such an approach enables a bi-directional flow of information whereby an understanding of basic mechanisms derived from mice can be integrated with studies from humans. Progress in this field is being driven forward at several levels of analysis, not least by the use of personalized light measurements and photoreceptor specific stimuli in human studies, and by studying the impact of environmental, rather than laboratory, lighting on different rodent models.


Assuntos
Fotobiologia , Roedores , Animais , Ritmo Circadiano/fisiologia , Humanos , Camundongos , Células Ganglionares da Retina/metabolismo , Opsinas de Bastonetes/metabolismo , Roedores/metabolismo , Núcleo Supraquiasmático/metabolismo
9.
Front Neurosci ; 16: 855154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495037

RESUMO

Mistimed exposure to light has been demonstrated to negatively affect multiple aspects of physiology and behavior. Here we analyzed the effects of chronic exposure to abnormal lighting conditions in mice. We exposed mice for 1 year to either: a standard light/dark cycle, a "light-pollution" condition in which low levels of light were present in the dark phase of the circadian cycle (dim light at night, DLAN), or altered light cycles in which the length of the weekday and weekend light phase differed by 6 h ("social jetlag"). Mice exhibited several circadian activity phenotypes, as well as changes in motor function, associated particularly with the DLAN condition. Our data suggest that these phenotypes might be due to changes outside the core clock. Dendritic spine changes in other brain regions raise the possibility that these phenotypes are mediated by changes in neuronal coordination outside of the clock. Given the prevalence of artificial light exposure in the modern world, further work is required to establish whether these negative effects are observed in humans as well.

10.
Sleep ; 44(9)2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-33838033

RESUMO

STUDY OBJECTIVES: Torpor is a regulated and reversible state of metabolic suppression used by many mammalian species to conserve energy. Whereas the relationship between torpor and sleep has been well-studied in seasonal hibernators, less is known about the effects of fasting-induced torpor on states of vigilance and brain activity in laboratory mice. METHODS: Continuous monitoring of electroencephalogram (EEG), electromyogram (EMG), and surface body temperature was undertaken in adult, male C57BL/6 mice over consecutive days of scheduled restricted feeding. RESULTS: All animals showed bouts of hypothermia that became progressively deeper and longer as fasting progressed. EEG and EMG were markedly affected by hypothermia, although the typical electrophysiological signatures of non-rapid eye movement (NREM) sleep, rapid eye movement (REM) sleep, and wakefulness enabled us to perform vigilance-state classification in all cases. Consistent with previous studies, hypothermic bouts were initiated from a state indistinguishable from NREM sleep, with EEG power decreasing gradually in parallel with decreasing surface body temperature. During deep hypothermia, REM sleep was largely abolished, and we observed shivering-associated intense bursts of muscle activity. CONCLUSIONS: Our study highlights important similarities between EEG signatures of fasting-induced torpor in mice, daily torpor in Djungarian hamsters and hibernation in seasonally hibernating species. Future studies are necessary to clarify the effects on fasting-induced torpor on subsequent sleep.


Assuntos
Torpor , Vigília , Animais , Cricetinae , Jejum , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sono
11.
Front Neurosci ; 15: 744543, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650401

RESUMO

Light plays a critical role in regulating physiology and behavior, including both visual and non-visual responses. In mammals, loss of both eyes abolishes all of these responses, demonstrating that the photoreceptors involved are exclusively ocular. By contrast, many non-mammalian species possess extra-ocular photoreceptors located in the pineal complex and deep brain. Whilst there have been suggestions of extra-ocular photoreception in mammals, including man, evidence for these photoreceptors is limited. One approach to objectively determine the presence of such receptors is to measure brain responses to light using functional magnetic resonance imaging (fMRI). Moreover, by using participants who are clinically anophthalmic (congenital and acquired), it is possible to investigate potential light detection in the absence of the retina. Here we scanned participants with anophthalmia and sighted participants in 4 different conditions; the first 3 conditions had a bright light source applied to the following locations: behind the right ear ("ear"), just below the nasal bridge and between the eyes ("head"), and at the right popliteal fossa ("knee"). In the fourth and final scan, the light source was switched off so that there was no light stimulus. All participants were scanned in a completely dark room. No consistent brain activity was detected during any of the light conditions in either sighted controls or anophthalmic participants. Thus, we do not provide any evidence for the presence of extraocular photoreceptors modulating human brain activity, despite recent evidence for gene transcription that may occur as a result of these photoreceptors.

12.
Sci Rep ; 10(1): 20680, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244132

RESUMO

Body temperature is an important physiological parameter in many studies of laboratory mice. Continuous assessment of body temperature has traditionally required surgical implantation of a telemeter, but this invasive procedure adversely impacts animal welfare. Near-infrared thermography provides a non-invasive alternative by continuously measuring the highest temperature on the outside of the body (Tskin), but the reliability of these recordings as a proxy for continuous core body temperature (Tcore) measurements has not been assessed. Here, Tcore (30 s resolution) and Tskin (1 s resolution) were continuously measured for three days in mice exposed to ad libitum and restricted feeding conditions. We subsequently developed an algorithm that optimised the reliability of a Tskin-derived estimate of Tcore. This identified the average of the maximum Tskin per minute over a 30-min interval as the optimal way to estimate Tcore. Subsequent validation analyses did however demonstrate that this Tskin-derived proxy did not provide a reliable estimate of the absolute Tcore due to the high between-animal variability in the relationship between Tskin and Tcore. Conversely, validation showed that Tskin-derived estimates of Tcore reliably describe temporal patterns in physiologically-relevant Tcore changes and provide an excellent measure to perform within-animal comparisons of relative changes in Tcore.


Assuntos
Temperatura Corporal/fisiologia , Pele/fisiopatologia , Animais , Regulação da Temperatura Corporal/fisiologia , Dietoterapia/métodos , Métodos de Alimentação , Temperatura Alta , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Termografia/métodos
13.
Biology (Basel) ; 8(1)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901884

RESUMO

Circadian rhythms are approximately 24 h cycles in physiology and behaviour that enable organisms to anticipate predictable rhythmic changes in their environment. These rhythms are a hallmark of normal healthy physiology, and disruption of circadian rhythms has implications for cognitive, metabolic, cardiovascular and immune function. Circadian disruption is of increasing concern, and may occur as a result of the pressures of our modern 24/7 society-including artificial light exposure, shift-work and jet-lag. In addition, circadian disruption is a common comorbidity in many different conditions, ranging from aging to neurological disorders. A key feature of circadian disruption is the breakdown of robust, reproducible rhythms with increasing fragmentation between activity and rest. Circadian researchers have developed a range of methods for estimating the period of time series, typically based upon periodogram analysis. However, the methods used to quantify circadian disruption across the literature are not consistent. Here we describe a range of different measures that have been used to measure circadian disruption, with a particular focus on laboratory rodent data. These methods include periodogram power, variability in activity onset, light phase activity, activity bouts, interdaily stability, intradaily variability and relative amplitude. The strengths and limitations of these methods are described, as well as their normal ranges and interrelationships. Whilst there is an increasing appreciation of circadian disruption as both a risk to health and a potential therapeutic target, greater consistency in the quantification of disrupted rhythms is needed.

14.
J Neurosci Methods ; 300: 26-36, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28414048

RESUMO

Light exerts widespread effects on physiology and behaviour. As well as the widely-appreciated role of light in vision, light also plays a critical role in many non-visual responses, including regulating circadian rhythms, sleep, pupil constriction, heart rate, hormone release and learning and memory. In mammals, responses to light are all mediated via retinal photoreceptors, including the classical rods and cones involved in vision as well as the recently identified melanopsin-expressing photoreceptive retinal ganglion cells (pRGCs). Understanding the effects of light on the laboratory mouse therefore depends upon an appreciation of the physiology of these retinal photoreceptors, including their differing sens itivities to absolute light levels and wavelengths. The signals from these photoreceptors are often integrated, with different responses involving distinct retinal projections, making generalisations challenging. Furthermore, many commonly used laboratory mouse strains carry mutations that affect visual or non-visual physiology, ranging from inherited retinal degeneration to genetic differences in sleep and circadian rhythms. Here we provide an overview of the visual and non-visual systems before discussing practical considerations for the use of light for researchers and animal facility staff working with laboratory mice.


Assuntos
Comportamento Animal/fisiologia , Pesquisa Biomédica/normas , Ritmo Circadiano/fisiologia , Fotoperíodo , Células Fotorreceptoras/fisiologia , Retina/fisiologia , Bem-Estar do Animal , Animais , Humanos , Camundongos , Camundongos Endogâmicos , Retina/anatomia & histologia
15.
Curr Biol ; 25(18): 2430-4, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26320947

RESUMO

Melanopsin (OPN4) is a retinal photopigment that mediates a wide range of non-image-forming (NIF) responses to light including circadian entrainment, sleep induction, the pupillary light response (PLR), and negative masking of locomotor behavior (the acute suppression of activity in response to light). How these diverse NIF responses can all be mediated by a single photopigment has remained a mystery. We reasoned that the alternative splicing of melanopsin could provide the basis for functionally distinct photopigments arising from a single gene. The murine melanopsin gene is indeed alternatively spliced, producing two distinct isoforms, a short (OPN4S) and a long (OPN4L) isoform, which differ only in their C terminus tails. Significantly, both isoforms form fully functional photopigments. Here, we show that different isoforms of OPN4 mediate different behavioral responses to light. By using RNAi-mediated silencing of each isoform in vivo, we demonstrated that the short isoform (OPN4S) mediates light-induced pupillary constriction, the long isoform (OPN4L) regulates negative masking, and both isoforms contribute to phase-shifting circadian rhythms of locomotor behavior and light-mediated sleep induction. These findings demonstrate that splice variants of a single receptor gene can regulate strikingly different behaviors.


Assuntos
Ritmo Circadiano , Camundongos/fisiologia , Atividade Motora , Mascaramento Perceptivo , Pupila/fisiologia , Opsinas de Bastonetes/genética , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sequência de Bases , Humanos , Luz , Camundongos/genética , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pupila/efeitos da radiação , Opsinas de Bastonetes/química , Opsinas de Bastonetes/metabolismo , Sono
16.
J Biol Rhythms ; 27(1): 48-58, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22306973

RESUMO

Sleep is a fundamental biological rhythm involving the interaction of numerous brain structures and diverse neurotransmitter systems. The primary measures used to define sleep are the electroencephalogram (EEG) and electromyogram (EMG). However, EEG-based methods are often unsuitable for use in high-throughput screens as they are time-intensive and involve invasive surgery. As such, the dissection of sleep mechanisms and the discovery of novel drugs that modulate sleep would benefit greatly from further development of rapid behavioral assays to assess sleep in animal models. Here is described an automated noninvasive approach to evaluate sleep duration, latency, and fragmentation using video tracking of mice in their home cage. This approach provides a high correlation with EEG/EMG measures under both baseline conditions and following administration of pharmacological agents. Moreover, the dose-dependent effects of sedatives, stimulants, and light can be readily detected. This approach is robust yet relatively inexpensive to implement and can be easily incorporated into ongoing screening programs to provide a powerful first-pass screen for assessing sleep and allied behaviors.


Assuntos
Comportamento Animal , Monitorização Fisiológica/veterinária , Sono/fisiologia , Gravação em Vídeo/métodos , Vigília/fisiologia , Animais , Automação Laboratorial , Cafeína/farmacologia , Eletroencefalografia , Eletromiografia , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piridinas/farmacologia , Sono/efeitos dos fármacos , Sono/efeitos da radiação , Vigília/efeitos dos fármacos , Zolpidem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa