Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(7): 3932-3940, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35298883

RESUMO

Ozone (O3) pollution threatens global public health and damages ecosystem productivity. Droughts modulate surface O3 through meteorological processes and vegetation feedbacks. Unraveling these influences is difficult with traditional chemical transport models. Here, using an atmospheric chemistry-vegetation coupled model in combination with a suite of existing measurements, we investigate the drought impacts on global surface O3 and explore the main driving processes. Relative to the mean state, accelerated photochemical rates dominate the surface O3 enhancement during droughts except for eastern U.S. and western Europe, where reduced stomatal uptakes make comparable contributions. During 1990-2012, the simulated frequency of O3 pollution episodes in western Europe decreases greatly with a negative trend of -5.5 ± 6.6 days per decade following the reductions in anthropogenic emissions if meteorology is fixed. However, such decreased trend is weakened to -2.1 ± 3.8 days per decade, which is closer to the observed trend of -2.9 ± 1.1 days per decade when year-to-year meteorology is applied because increased droughts alone offset 43% of the effects from air pollution control. Our results highlight that more stringent controls of O3 precursors are necessary to mitigate the higher risks of O3 pollution episodes by more droughts in a warming world.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Secas , Ecossistema , Monitoramento Ambiental , Ozônio/análise
2.
Sensors (Basel) ; 22(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35162041

RESUMO

The mobile monitoring of air pollution is a growing field, prospectively filling in spatial gaps while personalizing air-quality-based risk assessment. We developed wearable sensors to record particulate matter (PM), and through a community science approach, students of partnering Chicago high schools monitored PM concentrations during their commutes over a five- and thirteen-day period. Our main objective was to investigate how mobile monitoring influenced students' environmental attitudes and we did this by having the students explore the relationship between PM concentrations and urban vegetation. Urban vegetation was approximated with a normalized difference vegetation index (NDVI) using Landsat 8 satellite imagery. While the linear regression for one partner school indicated a negative correlation between PM and vegetation, the other indicated a positive correlation, contrary to our expectations. Survey responses were scored on the basis of their environmental affinity and knowledge. There were no significant differences between cumulative pre- and post-experiment survey responses at Josephinum Academy, and only one weakly significant difference in survey results at DePaul Prep in the Knowledge category. However, changes within certain attitudinal subscales may possibly suggest that students were inclined to practice more sustainable behaviors, but perhaps lacked the resources to do so.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Dispositivos Eletrônicos Vestíveis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Atitude , Monitoramento Ambiental , Humanos , Material Particulado/análise , Estudantes
3.
Atmos Environ (1994) ; 183: 69-83, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30505205

RESUMO

Biogenic isoprene emissions play a very important role in atmospheric chemistry. These emissions are strongly dependent on various environmental conditions, such as temperature, solar radiation, plant water stress, ambient ozone and CO2 concentrations, and soil moisture. Current biogenic emission models (i.e., Model of Emissions of Gases and Aerosols from Nature, MEGAN) can simulate emission responses to some of the major driving variables, such as short-term variations in temperature and solar radiation, but the other factors are either missing or poorly represented. In this paper, we propose a new modeling approach that considers the physiological effects of drought stress on plant photosynthesis and isoprene emissions for use in the MEGAN3 biogenic emission model. We test the MEGAN3 approach by integrating the algorithm into the existing MEGAN2.1 biogenic emission model framework embedded into the global Community Land Model of the Community Earth System Model (CLM4.5/CESM1.2). Single-point simulations are compared against available field measurements at the Missouri Ozarks AmeriFlux (MOFLUX) field site. The modeling results show that the MEGAN3 approach of using of a photosynthesis parameter (Vcmax) and soil wetness factor (ßt) to determine the drought activity factor leads to better simulated isoprene emissions in non-drought and drought periods. The global simulation with the MEGAN3 approach predicts a 17% reduction in global annual isoprene emissions, in comparison to the value predicted using the default CLM4.5/MEGAN2.1 without any drought effect. This reduction leads to changes in surface ozone and oxidants in the areas where the reduction of isoprene emissions is observed. Based on the results presented in this study, we conclude that it is important to simulate the drought-induced response of biogenic isoprene emission accurately in the coupled Earth System model.

4.
Ecol Appl ; 20(5): 1285-301, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20666250

RESUMO

Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal processing filter like the ensemble Kalman filter (EnKF). The EnKF compares each measurement in the time series to a model prediction and updates the NEE estimate by weighting the measurement and model prediction relative to a specified measurement error estimate and an estimate of the model-prediction error that is continuously updated based on model predictions of earlier measurements in the time series. Because of the covariance among model variables, the EnKF can also update estimates of variables for which there is no direct measurement. The resulting estimates evolve through time, enabling the EnKF to be used to estimate dynamic variables like changes in leaf phenology. The evolving estimates can also serve as a means to test the embedded model and reconcile persistent deviations between observations and model predictions. We embedded a simple arctic NEE model into the EnKF and filtered data from an eddy covariance tower located in tussock tundra on the northern foothills of the Brooks Range in northern Alaska, USA. The model predicts NEE based only on leaf area, irradiance, and temperature and has been well corroborated for all the major vegetation types in the Low Arctic using chamber-based data. This is the first application of the model to eddy covariance data. We modified the EnKF by adding an adaptive noise estimator that provides a feedback between persistent model data deviations and the noise added to the ensemble of Monte Carlo simulations in the EnKF. We also ran the EnKF with both a specified leaf-area trajectory and with the EnKF sequentially recalibrating leaf-area estimates to compensate for persistent model-data deviations. When used together, adaptive noise estimation and sequential recalibration substantially improved filter performance, but it did not improve performance when used individually. The EnKF estimates of leaf area followed the expected springtime canopy phenology. However, there were also diel fluctuations in the leaf-area estimates; these are a clear indication of a model deficiency possibly related to vapor pressure effects on canopy conductance.


Assuntos
Carbono/química , Modelos Teóricos , Regiões Árticas
6.
Tree Physiol ; 24(10): 1137-45, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15294760

RESUMO

Cottonwood (Populus deltoides Bartr. ex Marsh.) trees grown for 9 months in elevated carbon dioxide concentration ([CO2]) showed significant increases in height, leaf area and basal diameter relative to trees in a near-ambient [CO2] control treatment. Sample trees in the CO2 treatments were subjected to high and low atmospheric vapor pressure deficits (VPD) over a 5-week period at both high and low soil water contents (SWC). During these periods, transpiration rates at both the leaf and canopy levels were calculated based on sap flow measurements and leaf-to-sapwood area ratios. Leaf-level transpiration rates were approximately equivalent across [CO2] treatments when soil water was not limiting. In contrast, during drought stress, canopy-level transpiration rates were approximately equivalent across [CO2] treatments, indicating that leaf-level fluxes during drought stress were reduced in elevated [CO2] by a factor equal to the leaf area ratio of the two canopies. The shift from equivalent leaf-level transpiration to equivalent canopy-level transpiration with increasing drought stress suggests maximum water use rates were controlled primarily by atmospheric demand at high SWC and by soil water availability at low SWC. Changes in VPD had less effect on transpiration than changes in SWC for trees in both CO2 treatments. Transpiration rates of trees in both CO2 treatments reached maximum values at a VPD of about 2.0 kPa at high SWC, but leveled off and decreased slightly in both canopies as VPD increased above this value. At low SWC, increasing VPD from approximately 1.4 to 2.5 kPa caused transpiration rates to decline slightly in the canopies of trees in both treatments, with significant (P = 0.004) decreases occurring in trees in the near-ambient [CO2] treatment. The transpiration responses at high VPD in the presence of high SWC and throughout the low SWC treatment suggest some hydraulic limitations to water use occurred. Comparisons of midday leaf water potentials of trees in both CO2 treatments support this conclusion.


Assuntos
Transpiração Vegetal/fisiologia , Populus/fisiologia , Árvores/fisiologia , Dióxido de Carbono , Desidratação/fisiopatologia , Folhas de Planta/fisiologia , Água/fisiologia
7.
Sci Total Environ ; 481: 352-9, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24614154

RESUMO

Including algorithms to account for the suppression of isoprene emission by elevated CO2 concentration affects estimates of global isoprene emission for future climate change scenarios. In this study, leaf-level measurements of isoprene emission were made to determine the short-term interactive effect of leaf temperature and CO2 concentration. For both greenhouse plants and plants grown under field conditions, the suppression of isoprene emission was reduced by increasing leaf temperature. For each of the four different tree species investigated, aspen (Populus tremuloides Michx.), cottonwood (Populus deltoides W. Bartram ex Marshall), red oak (Quercus rubra L.), and tundra dwarf willow (Salix pulchra Cham.), the suppression of isoprene by elevated CO2 was eliminated at increased temperature, and the maximum temperature where suppression was observed ranged from 25 to 35°C. Hypotheses proposed to explain the short-term suppression of isoprene emission by increased CO2 concentration were tested against this observation. Hypotheses related to cofactors in the methylerythritol phosphate (MEP) pathway were consistent with reduced suppression at elevated leaf temperature. Also, reduced solubility of CO2 with increased temperature can explain the reduced suppression for the phosphoenolpyruvate (PEP) carboxylase competition hypothesis. Some global models of isoprene emission include the short-term suppression effect, and should be modified to include the observed interaction. If these results are consistent at longer timescales, there are implications for predicting future global isoprene emission budgets and the reduced suppression at increased temperature could explain some of the variable responses observed in long-term CO2 exposure experiments.


Assuntos
Butadienos/metabolismo , Dióxido de Carbono/análise , Mudança Climática , Hemiterpenos/metabolismo , Pentanos/metabolismo , Folhas de Planta/fisiologia , Temperatura , Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Populus/fisiologia , Quercus/fisiologia , Salix/fisiologia
8.
Environ Sci Technol ; 42(5): 1623-9, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18441812

RESUMO

Biogenic volatile organic compounds (BVOC) contribute significantly to the formation of ozone and secondary organic aerosol (SOA). The Model of Emissions of Gases and Aerosols from Nature (MEGANv2.02) is used to estimate emissions of isoprene, monoterpenes (MT), and sesquiterpenes (SQT) across the United States. Compared to the Biogenic Emission Inventory System (BEIS3.0), MEGANv2.02 estimates higher isoprene but lower MT emissions for July 2001 and January 2002. A sensitivity study of SQT and MT emission factors and algorithm parameters was conducted by assigning values to four plant functional types (PFTs) using both recent measurements and literature values. The standard deviations of the emissions factors within these PFTs were two to four times the averages because of the variation in experimental basal emissions rate data. More recently published SQT and MT basal emission rates are generally lower than those reported in the literature through 2004. With the new emissions factors, monthly average SQT emission rates for the contiguous United States are equal to 16% of the MT emissions during July and 9% of the emissions during January. The SQT emissions distribution is strongly influenced by the grass and crop PFT, for which SQT emissions data are quite limited.


Assuntos
Poluentes Atmosféricos/análise , Monoterpenos/análise , Sesquiterpenos/análise , Estados Unidos
9.
Funct Plant Biol ; 34(9): 774-784, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32689405

RESUMO

Two cottonwood plantations were grown at different CO2 concentrations at the Biosphere 2 Laboratory in Arizona to investigate the response of isoprene emission to elevated [CO2] and its interaction with water deficits. We focused on responses due to seasonal variation and variation in the mean climate from one year to the next. In fall and in spring, isoprene emission rate showed a similar inhibition by elevated [CO2], despite an 8-10°C seasonal difference in mean air temperature. The overall response of isoprene emission to drought was also similar for observations conducted during the spring or fall, and during the fall of two different years with an approximate 5°C difference in mean air temperature. In general, leaf-level isoprene emission rates, measured at constant temperature and photon-flux density, decreased slightly, or remained constant during drought, whereas ecosystem-level isoprene emission rates increased. The uncoupling of ecosystem- and leaf-scale responses is not due to differential dependence on leaf area index (LAI) as LAI increased only slightly, or decreased, during the drought treatments at the same time that ecosystem isoprene emission rate increased greatly. Nor does the difference in isoprene emission rate between leaves and ecosystems appear to be due solely to increases in canopy surface temperature during the drought, though some increase in temperature was observed. It is possible that still further factors, such as increased penetration of PPFD into the canopy as a result of changes in leaf angle, reduced sink strength of the soil for atmospheric isoprene, and decreases in the mean Ci of leaves, combined with the small increases in canopy surface temperature, increased the ecosystem isoprene emission rate. Whatever the causes of the differences in the leaf and ecosystem responses, we conclude that the overall shape of the leaf and ecosystem responses to drought was constant irrespective of season or year.

10.
Nature ; 421(6920): 256-9, 2003 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-12529640

RESUMO

The emission of isoprene from the leaves of forest trees is a fundamental component of biosphere-atmosphere interactions, controlling many aspects of photochemistry in the lower atmosphere. As almost all commercial agriforest species emit high levels of isoprene, proliferation of agriforest plantations has significant potential to increase regional ozone pollution and enhance the lifetime of methane, an important determinant of global climate. Here we show that growth of an intact Populus deltoides plantation under increased CO2 (800 micromol x mol(-1) and 1,200 micromol x mol(-1)) reduced ecosystem isoprene production by 21% and 41%, while above-ground biomass accumulation was enhanced by 60% and 82%, respectively. Exposure to increased CO2 significantly reduced the cellular content of dimethylallyl diphosphate, the substrate for isoprene synthesis, in both leaves and leaf protoplasts. We identify intracellular metabolic competition for phosphoenolpyruvate as a possible control point in explaining the suppression of isoprene emission under increased CO2. Our results highlight the potential for uncoupling isoprene emission from biomass accumulation in an agriforest species, and show that negative air-quality effects of proliferating agriforests may be offset by increases in CO2.


Assuntos
Butadienos/metabolismo , Dióxido de Carbono/metabolismo , Ecossistema , Hemiterpenos , Pentanos , Populus/crescimento & desenvolvimento , Populus/metabolismo , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Atmosfera/química , Biomassa , Dióxido de Carbono/farmacologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Populus/efeitos dos fármacos , Árvores/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa