Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37760190

RESUMO

Injectable hydrogels offer numerous advantages in various areas, which include tissue engineering and drug delivery because of their unique properties such as tunability, excellent carrier properties, and biocompatibility. These hydrogels can be administered with minimal invasiveness. In this study, we synthesized an injectable hydrogel by rehydrating lyophilized mixtures of guar adamantane (Guar-ADI) and poly-ß-cyclodextrin (p-ßCD) in a solution of phosphate-buffered saline (PBS) maintained at pH 7.4. The hydrogel was formed via host-guest interaction between modified guar (Guar-ADI), obtained by reacting guar gum with 1-adamantyl isocyanate (ADI) and p-ßCD. Comprehensive characterization of all synthesized materials, including the hydrogel, was performed using nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and rheology. The in vitro drug release study demonstrated the hydrogel's efficacy in controlled drug delivery, exemplified by the release of bovine serum albumin (BSA) and anastrozole, both of which followed first-order kinetics. Furthermore, the hydrogel displayed excellent biocompatibility and served as an ideal scaffold for promoting the growth of mouse osteoblastic MC3T3 cells as evidenced by the in vitro biocompatibility study.

2.
ACS Omega ; 7(1): 38-47, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35036676

RESUMO

Organoids are three-dimensional (3D) self-renewing and self-organizing clusters of cells that imitate an organ's structure and function, making them an important tool in various fields ranging from regenerative medicine to drug discovery. Organoids can be developed ex vivo by isolating adult stem cells from an organ-specific tissue (e.g., intestine, brain, and lung) and allowing the stem cells to grow and differentiate in an appropriate growth media with some structural support elements. A 3D extracellular matrix (ECM) hydrogel, a network of highly hydrophilic cross-linked polymer chains, provides essential support and cues for ex vivo organoid growth. Commercially available hydrogel matrices (for example, Matrigel and collagen) are primarily derived from animal tissues. Notably, these animal-derived hydrogel matrices are not suitable for controlled modifications and pose risks of immunogen and pathogen transfer, thus diminishing their clinical application. These limitations of animal-derived hydrogel matrices can, however, be overcome using synthetic hydrogel matrices based on polymers such as polyethylene glycol, nanocellulose, alginate, hyaluronic acid, and polylactic-co-glycolic acid. This review highlights some of the current approaches and advantages of developing synthetic ECM-mimic hydrogels, focusing primarily on intestinal organoid culture.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa