Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Immunity ; 45(2): 415-27, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27533016

RESUMO

Chronic infections promote the terminal differentiation (or "exhaustion") of T cells and are thought to preclude the formation of memory T cells. In contrast, we discovered a small subpopulation of virus-specific CD8(+) T cells that sustained the T cell response during chronic infections. These cells were defined by, and depended on, the expression of the transcription factor Tcf1. Transcriptome analysis revealed that this population shared key characteristics of central memory cells but lacked an effector signature. Unlike conventional memory cells, Tcf1-expressing T cells displayed hallmarks of an "exhausted" phenotype, including the expression of inhibitory receptors such as PD-1 and Lag-3. This population was crucial for the T cell expansion that occurred in response to inhibitory receptor blockade during chronic infection. These findings identify a memory-like T cell population that sustains T cell responses and is a prime target for therapeutic interventions to improve the immune response in chronic infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Hepacivirus/imunologia , Hepatite C Crônica/imunologia , Imunoterapia/métodos , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Fator 1 de Transcrição de Linfócitos T/metabolismo , Adulto , Animais , Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/virologia , Proliferação de Células , Células Cultivadas , Senescência Celular , Doença Crônica , Feminino , Humanos , Memória Imunológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Transcriptoma , Proteína do Gene 3 de Ativação de Linfócitos
2.
J Immunol ; 193(6): 2784-91, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25127860

RESUMO

Protection against reinfection is mediated by Ag-specific memory CD8 T cells, which display stem cell-like function. Because canonical Wnt (Wingless/Int1) signals critically regulate renewal versus differentiation of adult stem cells, we evaluated Wnt signal transduction in CD8 T cells during an immune response to acute infection with lymphocytic choriomeningitis virus. Whereas naive CD8 T cells efficiently transduced Wnt signals, at the peak of the primary response to infection only a fraction of effector T cells retained signal transduction and the majority displayed strongly reduced Wnt activity. Reduced Wnt signaling was in part due to the downregulation of Tcf-1, one of the nuclear effectors of the pathway, and coincided with progress toward terminal differentiation. However, the correlation between low and high Wnt levels with short-lived and memory precursor effector cells, respectively, was incomplete. Adoptive transfer studies showed that low and high Wnt signaling did not influence cell survival but that Wnt high effectors yielded memory cells with enhanced proliferative potential and stronger protective capacity. Likewise, following adoptive transfer and rechallenge, memory cells with high Wnt levels displayed increased recall expansion, compared with memory cells with low Wnt signaling, which were preferentially effector-like memory cells, including tissue-resident memory cells. Thus, canonical Wnt signaling identifies CD8 T cells with enhanced proliferative potential in part independent of commonly used cell surface markers to discriminate effector and memory T cell subpopulations. Interventions that maintain Wnt signaling may thus improve the formation of functional CD8 T cell memory during vaccination.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Proteínas Wnt/imunologia , Via de Sinalização Wnt/imunologia , Transferência Adotiva , Animais , Proteína Axina/biossíntese , Linfócitos T CD8-Positivos/transplante , Diferenciação Celular/imunologia , Proliferação de Células , Regulação para Baixo , Fator 1-alfa Nuclear de Hepatócito/biossíntese , Memória Imunológica/imunologia , Lectinas Tipo C , Coriomeningite Linfocítica/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Imunológicos/biossíntese , Subpopulações de Linfócitos T/imunologia , Vacinação
3.
Clin Pharmacol Ther ; 116(3): 834-846, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38769868

RESUMO

The multifaceted IL-2/IL-2R biology and its modulation by promising therapeutic agents are highly relevant topics in the cancer immunotherapy field. A novel CD25-Treg-depleting antibody (Vopikitug, RG6292) has been engineered to preserve IL-2 signaling on effector T cells to enhance effector activation and antitumor immunity, and is currently being evaluated in the clinic. The Entry into Human-enabling framework described here investigated the characteristics of RG6292, from in vitro quantification of CD25 and RG6292 pharmacology using human tissues to in vivo assessment of PK/PD/safety relationships in cynomolgus monkeys as non-human primate species (NHP). Fundamental knowledge on CD25 and Treg biology in healthy and diseased tissues across NHP and human highlighted the commonalities between these species in regard to the target biology and demonstrated the conservation of RG6292 properties between NHP and human. The integration of in vitro and in vivo PK/PD/safety data from these species enabled the identification of human relevant safety risks, the selection of the most appropriate safe starting dose and the projection of the pharmacologically-relevant dose range. The first clinical data obtained for RG6292 in patients verified the appropriateness of the described approaches as well as validated the full clinical relevance of the projected safety, PK, and PD profiles from animal to man. This work shows how the integration of mechanistic non-clinical data increases the predictive value for human, allowing efficient transition of drug candidates and optimizations of early clinical investigations.


Assuntos
Imunoterapia , Macaca fascicularis , Neoplasias , Linfócitos T Reguladores , Humanos , Animais , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Imunoterapia/métodos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Pesquisa Translacional Biomédica/métodos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/uso terapêutico
4.
Front Oncol ; 13: 1150149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205201

RESUMO

Background: Acute Myeloid leukemia is a heterogeneous disease that requires novel targeted treatment options tailored to the patients' specific microenvironment and blast phenotype. Methods: We characterized bone marrow and/or blood samples of 37 AML patients and healthy donors by high dimensional flow cytometry and RNA sequencing using computational analysis. In addition, we performed ex vivo ADCC assays using allogeneic NK cells isolated from healthy donors and AML patient material to test the cytotoxic potential of CD25 Mab (also referred to as RG6292 and RO7296682) or isotype control antibody on regulatory T cells and CD25+ AML cells. Results: Bone marrow composition, in particular the abundance of regulatory T cells and CD25 expressing AML cells, correlated strongly with that of the blood in patients with time-matched samples. In addition, we observed a strong enrichment in the prevalence of CD25 expressing AML cells in patients bearing a FLT3-ITD mutation or treated with a hypomethylating agent in combination with venetoclax. We adopted a patient-centric approach to study AML clusters with CD25 expression and found it most highly expressed on immature phenotypes. Ex vivo treatment of primary AML patient samples with CD25 Mab, a human CD25 specific glycoengineered IgG1 antibody led to the specific killing of two different cell types, CD25+ AML cells and regulatory T cells, by allogeneic Natural Killer cells. Conclusion: The in-depth characterization of patient samples by proteomic and genomic analyses supported the identification of a patient population that may benefit most by harnessing CD25 Mab's dual mode of action. In this pre-selected patient population, CD25 Mab could lead to the specific depletion of regulatory T cells, in addition to leukemic stem cells and progenitor-like AML cells that are responsible for disease progression or relapse.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa