Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
J Physiol ; 601(19): 4423-4440, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589511

RESUMO

The hypoxic ventilatory response (HVR) is the increase in breathing in response to reduced arterial oxygen pressure. Over several decades, studies have revealed substantial population-level differences in the magnitude of the HVR as well as significant inter-individual variation. In particular, low HVRs occur frequently in Andean high-altitude native populations. However, our group conducted hundreds of HVR measures over several years and commonly observed low responses in sea-level populations as well. As a result, we aimed to determine the normal HVR distribution, whether low responses were common, and to what extent variation in study protocols influence these findings. We conducted a comprehensive search of the literature and examined the distributions of HVR values across 78 studies that utilized step-down/steady-state or progressive hypoxia methods in untreated, healthy human subjects. Several studies included multiple datasets across different populations or experimental conditions. In the final analysis, 72 datasets reported mean HVR values and 60 datasets provided raw HVR datasets. Of the 60 datasets reporting raw HVR values, 35 (58.3%) were at least moderately positively skewed (skew > 0.5), and 21 (35%) were significantly positively skewed (skew > 1), indicating that lower HVR values are common. The skewness of HVR distributions does not appear to be an artifact of methodology or the unit with which the HVR is reported. Further analysis demonstrated that the use of step-down hypoxia versus progressive hypoxia methods did not have a significant impact on average HVR values, but that isocapnic protocols produced higher HVRs than poikilocapnic protocols. This work provides a reference for expected HVR values and illustrates substantial inter-individual variation in this key reflex. Finally, the prevalence of low HVRs in the general population provides insight into our understanding of blunted HVRs in high-altitude adapted groups. KEY POINTS: The hypoxic ventilatory response (HVR) plays a crucial role in determining an individual's predisposition to hypoxia-related pathologies. There is notable variability in HVR sensitivity across individuals as well as significant population-level differences. We report that the normal distribution of the HVR is positively skewed, with a significant prevalence of low HVR values amongst the general healthy population. We also find no significant impact of the experimental protocol used to induce hypoxia, although HVR is greater with isocapnic versus poikilocapnic methods. These results provide insight into the normal distribution of the HVR, which could be useful in clinical decisions of diseases related to hypoxaemia. Additionally, the low HVR values found within the general population provide insight into the genetic adaptations found in populations residing in high altitudes.


Assuntos
Altitude , Hipóxia , Humanos , Distribuição Normal , Oxigênio , Respiração
2.
Cell ; 133(2): 223-34, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18423195

RESUMO

Skin plays an essential role, mediated in part by its remarkable vascular plasticity, in adaptation to environmental stimuli. Certain vertebrates, such as amphibians, respond to hypoxia in part through the skin; but it is unknown whether this tissue can influence mammalian systemic adaptation to low oxygen levels. We have found that epidermal deletion of the hypoxia-responsive transcription factor HIF-1alpha inhibits renal erythropoietin (EPO) synthesis in response to hypoxia. Conversely, mice with an epidermal deletion of the von Hippel-Lindau (VHL) factor, a negative regulator of HIF, have increased EPO synthesis and polycythemia. We show that nitric oxide release induced by the HIF pathway acts on cutaneous vascular flow to increase systemic erythropoietin expression. These results demonstrate that in mice the skin is a critical mediator of systemic responses to environmental oxygen.


Assuntos
Epiderme/fisiologia , Oxigênio/metabolismo , Animais , Análise Química do Sangue , Eritropoetina/metabolismo , Humanos , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Óxido Nítrico/sangue , Oxigênio/sangue , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
3.
Dermatology ; 237(5): 792-796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33091909

RESUMO

BACKGROUND: Despite their widespread clinical use in both acne vulgaris and rosacea, the effects of tetracyclines on sebocytes have not been investigated until now. Sebaceous glands are central to the pathogenesis of acne and may be important in the development of rosacea. OBJECTIVE: The aim of this study was to assess the effects of doxycycline on the immortalized SZ95 sebaceous gland cell line as a model for understanding possible effectiveness on the sebaceous glands in vivo. METHODS: The effects of doxycycline on SZ95 sebocyte numbers, viability, and lipid content as well as its effects on the mRNA levels of peroxisome proliferator-activated receptors α and γ, in comparison to the peroxisome proliferator-activated receptor γ agonist troglitazone, were investigated. RESULTS: Doxycycline reduced the cell number and increased the lipid content of SZ95 sebocytes in vitro after 2 days of treatment. These doxycycline effects may be explained by an upregulation of peroxisome proliferator-activated receptor γ mRNA levels at 12 and 24 h, whereas troglitazone already upregulated peroxisome proliferator-activated receptor γ levels after 6 h. Both compounds did not influence peroxisome proliferator-activated receptor α mRNA levels. CONCLUSION: These new findings illustrate a previously unknown effect of doxycycline on sebocytes, which may be relevant to their modulation of disorders of the pilosebaceous unit, such as acne vulgaris and rosacea.


Assuntos
Antibacterianos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Doxiciclina/farmacologia , Glândulas Sebáceas/efeitos dos fármacos , Glândulas Sebáceas/patologia , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos , PPAR alfa/metabolismo , PPAR gama/metabolismo , Glândulas Sebáceas/metabolismo
4.
J Physiol ; 598(10): 2021-2034, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32026480

RESUMO

KEY POINTS: We hypothesized that hypoxia inducible factor 1α (HIF-1α) in CNS respiratory centres is necessary for ventilatory acclimatization to hypoxia (VAH); VAH is a time-dependent increase in baseline ventilation and the hypoxic ventilatory response (HVR) occurring over days to weeks of chronic sustained hypoxia (CH). Constitutive deletion of HIF-1α in CNS neurons in transgenic mice tended to blunt the increase in HVR that occurs in wild-type mice with CH. Conditional deletion of HIF-1α in glutamatergic neurons of the nucleus tractus solitarius during CH significantly decreased ventilation in acute hypoxia but not normoxia in CH mice. These effects are not explained by changes in metabolic rate, nor CO2 , and there were no changes in the HVR in normoxic mice. HIF-1α mediated changes in gene expression in CNS respiratory centres are necessary in addition to plasticity of arterial chemoreceptors for normal VAH. ABSTRACT: Chronic hypoxia (CH) produces a time-dependent increase of resting ventilation and the hypoxic ventilatory response (HVR) that is called ventilatory acclimatization to hypoxia (VAH). VAH involves plasticity in arterial chemoreceptors and the CNS [e.g. nucleus tractus solitarius (NTS)], although the signals for this plasticity are not known. We hypothesized that hypoxia inducible factor 1α (HIF-1α), an O2 -sensitive transcription factor, is necessary in the NTS for normal VAH. We tested this in two mouse models using loxP-Cre gene deletion. First, HIF-1α was constitutively deleted in CNS neurons (CNS-HIF-1α-/- ) by breeding HIF-1α floxed mice with mice expressing Cre-recombinase driven by the calcium/calmodulin-dependent protein kinase IIα promoter. Second, HIF-1α was deleted in NTS neurons in adult mice (NTS-HIF-1α-/- ) by microinjecting adeno-associated virus that expressed Cre-recombinase in HIF-1α floxed mice. In normoxic control mice, HIF-1α deletion in the CNS or NTS did not affect ventilation, nor the acute HVR (10-15 min hypoxic exposure). In mice acclimatized to CH for 1 week, ventilation in hypoxia was blunted in CNS-HIF-1α-/- and significantly decreased in NTS-HIF-1α-/- compared to control mice (P < 0.0001). These changes were not explained by differences in metabolic rate or CO2 . Immunofluorescence showed that HIF-1α deletion in NTS-HIF-1α-/- was restricted to glutamatergic neurons. The results indicate that HIF-1α is a necessary signal for VAH and the previously described plasticity in glutamatergic neurotransmission in the NTS with CH. HIF-1α deletion had no effect on the increase in normoxic ventilation with acclimatization to CH, indicating this is a distinct mechanism from the increased HVR with VAH.


Assuntos
Hipóxia , Núcleo Solitário , Aclimatação , Animais , Camundongos , Neurônios , Centro Respiratório
5.
Am J Respir Crit Care Med ; 198(4): 509-520, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29570986

RESUMO

RATIONALE: Endothelial dysfunction plays an integral role in pulmonary hypertension (PH). AMPK (AMP-activated protein kinase) and ACE2 (angiotensin-converting enzyme 2) are crucial in endothelial homeostasis. The mechanism by which AMPK regulates ACE2 in the pulmonary endothelium and its protective role in PH remain elusive. OBJECTIVES: We investigated the role of AMPK phosphorylation of ACE2 Ser680 in ACE2 stability and deciphered the functional consequences of this post-translational modification of ACE2 in endothelial homeostasis and PH. METHODS: Bioinformatics prediction, kinase assay, and antibody against phospho-ACE2 Ser680 (p-ACE2 S680) were used to investigate AMPK phosphorylation of ACE2 Ser680 in endothelial cells. Using CRISPR-Cas9 genomic editing, we created gain-of-function ACE2 S680D knock-in and loss-of-function ACE2 knockout (ACE2-/-) mouse lines to address the involvement of p-ACE2 S680 and ACE2 in PH. The AMPK-p-ACE2 S680 axis was also validated in lung tissue from humans with idiopathic pulmonary arterial hypertension. MEASUREMENTS AND MAIN RESULTS: Phosphorylation of ACE2 by AMPK enhanced the stability of ACE2, which increased Ang (angiotensin) 1-7 and endothelial nitric oxide synthase-derived NO bioavailability. ACE2 S680D knock-in mice were resistant to PH as compared with wild-type littermates. In contrast, ACE2-knockout mice exacerbated PH, a similar phenotype found in mice with endothelial cell-specific deletion of AMPKα2. Consistently, the concentrations of phosphorylated AMPK, p-ACE2 S680, and ACE2 were decreased in human lungs with idiopathic pulmonary arterial hypertension. CONCLUSIONS: Impaired phosphorylation of ACE2 Ser680 by AMPK in pulmonary endothelium leads to a labile ACE2 and hence is associated with the pathogenesis of PH. Thus, AMPK regulation of the vasoprotective ACE2 is a potential target for PH treatment.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Endotélio Vascular/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Peptidil Dipeptidase A/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Modelos Animais de Doenças , Endotélio Vascular/enzimologia , Humanos , Hipertensão Pulmonar/enzimologia , Pulmão/enzimologia , Pulmão/fisiopatologia , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley
6.
J Neurophysiol ; 120(1): 296-305, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29617218

RESUMO

In patients with obstructive sleep apnea (OSA), the pharyngeal muscles become relaxed during sleep, which leads to a partial or complete closure of upper airway. Experimental studies suggest that withdrawal of noradrenergic and serotonergic drives importantly contributes to depression of hypoglossal motoneurons and, therefore, may contribute to OSA pathophysiology; however, specific cellular and synaptic mechanisms remain unknown. In this new study, we developed a biophysical network model to test the hypothesis that, to explain experimental observations, the neuronal network for monoaminergic control of excitability of hypoglossal motoneurons needs to include excitatory and inhibitory perihypoglossal interneurons that mediate noradrenergic and serotonergic drives to hypoglossal motoneurons. In the model, the state-dependent activation of the hypoglossal motoneurons was in qualitative agreement with in vivo data during simulated rapid eye movement (REM) and non-REM sleep. The model was applied to test the mechanisms of action of noradrenergic and serotonergic drugs during REM sleep as observed in vivo. We conclude that the proposed minimal neuronal circuit is sufficient to explain in vivo data and supports the hypothesis that perihypoglossal interneurons may mediate state-dependent monoaminergic drive to hypoglossal motoneurons. The population of the hypothesized perihypoglossal interneurons may serve as novel targets for pharmacological treatment of OSA. NEW & NOTEWORTHY In vivo studies suggest that during rapid eye movement sleep, withdrawal of noradrenergic and serotonergic drives critically contributes to depression of hypoglossal motoneurons (HMs), which innervate the tongue muscles. By means of a biophysical model, which is consistent with a broad range of empirical data, we demonstrate that the neuronal network controlling the excitability of HMs needs to include excitatory and inhibitory interneurons that mediate noradrenergic and serotonergic drives to HMs.


Assuntos
Tronco Encefálico/fisiopatologia , Nervo Hipoglosso/fisiopatologia , Modelos Neurológicos , Neurônios Motores/fisiologia , Apneia Obstrutiva do Sono/fisiopatologia , Adrenérgicos/farmacologia , Humanos , Neurônios Motores/efeitos dos fármacos , Serotoninérgicos/farmacologia , Sono REM , Língua/inervação
7.
J Anim Breed Genet ; 135(5): 349-356, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30105811

RESUMO

Genetic evaluations of individual fish were calculated for growth traits in North American Atlantic salmon with and without inclusion of genetic markers. The number of SNP markers was reduced to 6,000 and further to 270 in order to reduce the problem of overparameterization. SNP genotypes were predicted for all ungenotyped animals in the pedigree. Analysis of traits used a model with polygenic effects and SNP markers together. Polygenic effects refer to the additive genetic effects that remain after accounting for SNP genotypes. SNP marker genotypes were included as covariates to evaluate fish for growth traits (weight and length) in different environments (freshwater and seawater) with genders separated. Including regressions on SNP marker genotypes reduced the sum of squares of residuals by 2.7%-12.5% and increased the variability of Mendelian sampling effects (i.e., within-family variation) compared to traditional animal model evaluations. Genetic evaluations may be carried out with a few hundred markers which may be more affordable for genotyping large numbers of fish.


Assuntos
Marcadores Genéticos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Salmo salar/crescimento & desenvolvimento , Salmo salar/genética , Animais , Genômica/métodos , Genótipo , Modelos Genéticos , Fenótipo
8.
J Physiol ; 595(17): 5797-5813, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28688178

RESUMO

KEY POINTS: Changes in gene expression that occur within hours of exposure to hypoxia in in vivo skeletal muscles remain unexplored. Two hours of hypoxia caused significant down-regulation of extracellular matrix genes followed by a shift at 6 h to altered expression of genes associated with the nuclear lumen while respiratory and blood gases were stabilized. Enrichment analysis of mRNAs classified by stability rates suggests an attenuation of post-transcriptional regulation within hours of hypoxic exposure, where PI3K-Akt signalling was suggested to have a nodal role by pathway analysis. Experimental measurements and bioinformatic analyses suggested that the dephosphorylation of Akt after 2 h of hypoxic exposure might deactivate RNA-binding protein BRF1, hence resulting in the selective degradation of mRNAs. ABSTRACT: The effects of acute hypoxia have been widely studied, but there are few studies of transcriptional responses to hours of hypoxia in vivo, especially in hypoxia-tolerant tissues like skeletal muscles. We used RNA-seq to analyse gene expression in plantaris muscles while monitoring respiration, arterial blood gases, and blood glucose in mice exposed to 8% O2 for 2 or 6 h. Rapid decreases in blood gases and a slower reduction in blood glucose suggest stress, which was accompanied by widespread changes in gene expression. Early down-regulation of genes associated with the extracellular matrix was followed by a shift to genes associated with the nuclear lumen. Most of the early down-regulated genes had mRNA half-lives longer than 2 h, suggesting a role for post-transcriptional regulation. These transcriptional changes were enriched in signalling pathways in which the PI3K-Akt signalling pathway was identified as a hub. Our analyses indicated that gene targets of PI3K-Akt but not HIF were enriched in early transcriptional responses to hypoxia. Among the PI3K-Akt targets, 75% could be explained by a deactivation of adenylate-uridylate-rich element (ARE)-binding protein BRF1, a target of PI3K-Akt. Consistent decreases in the phosphorylation of Akt and BRF1 were experimentally confirmed following 2 h of hypoxia. These results suggest that the PI3K-Akt signalling pathway might play a role in responses induced by acute hypoxia in skeletal muscles, partially through the dephosphorylation of ARE-binding protein BRF1.


Assuntos
Hipóxia/genética , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases/genética , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hipóxia/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais
9.
J Neurophysiol ; 117(4): 1625-1635, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28100653

RESUMO

Ventilatory acclimatization to hypoxia (VAH) is the time-dependent increase in ventilation, which persists upon return to normoxia and involves plasticity in both central nervous system respiratory centers and peripheral chemoreceptors. We investigated the role of glial cells in VAH in male Sprague-Dawley rats using minocycline, an antibiotic that inhibits microglia activation and has anti-inflammatory properties, and barometric pressure plethysmography to measure ventilation. Rats received either minocycline (45mg/kg ip daily) or saline beginning 1 day before and during 7 days of chronic hypoxia (CH, PiO2 = 70 Torr). Minocycline had no effect on normoxic control rats or the hypercapnic ventilatory response in CH rats, but minocycline significantly (P < 0.001) decreased ventilation during acute hypoxia in CH rats. However, minocycline administration during only the last 3 days of CH did not reverse VAH. Microglia and astrocyte activation in the nucleus tractus solitarius was quantified from 30 min to 7 days of CH. Microglia showed an active morphology (shorter and fewer branches) after 1 h of hypoxia and returned to the control state (longer filaments and extensive branching) after 4 h of CH. Astrocytes increased glial fibrillary acidic protein antibody immunofluorescent intensity, indicating activation, at both 4 and 24 h of CH. Minocycline had no effect on glia in normoxia but significantly decreased microglia activation at 1 h of CH and astrocyte activation at 24 h of CH. These results support a role for glial cells, providing an early signal for the induction but not maintenance of neural plasticity underlying ventilatory acclimatization to hypoxia.NEW & NOTEWORTHY The signals for neural plasticity in medullary respiratory centers underlying ventilatory acclimatization to chronic hypoxia are unknown. We show that chronic hypoxia activates microglia and subsequently astrocytes. Minocycline, an antibiotic that blocks microglial activation and has anti-inflammatory properties, also blocks astrocyte activation in respiratory centers during chronic hypoxia and ventilatory acclimatization. However, minocycline cannot reverse ventilatory acclimatization after it is established. Hence, glial cells may provide signals that initiate but do not sustain ventilatory acclimatization.


Assuntos
Antibacterianos/farmacologia , Hipóxia/patologia , Minociclina/farmacologia , Neuroglia/efeitos dos fármacos , Respiração/efeitos dos fármacos , Centro Respiratório/patologia , Aclimatação/efeitos dos fármacos , Análise de Variância , Animais , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Pletismografia , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/citologia
10.
Am J Respir Cell Mol Biol ; 53(3): 355-67, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25569851

RESUMO

Hypoxic pulmonary vasoconstriction (HPV) is an important physiological response that optimizes the ventilation/perfusion ratio. Chronic hypoxia causes vascular remodeling, which is central to the pathogenesis of hypoxia-induced pulmonary hypertension (HPH). We have previously shown that Notch3 is up-regulated in HPH and that activation of Notch signaling enhances store-operated Ca(2+) entry (SOCE), an important mechanism that contributes to pulmonary arterial smooth muscle cell (PASMC) proliferation and contraction. Here, we investigate the role of Notch signaling in HPV and hypoxia-induced enhancement of SOCE. We examined SOCE in human PASMCs exposed to hypoxia and pulmonary arterial pressure in mice using the isolated perfused/ventilated lung method. Wild-type and canonical transient receptor potential (TRPC) 6(-/-) mice were exposed to chronic hypoxia to induce HPH. Inhibition of Notch signaling with a γ-secretase inhibitor attenuates hypoxia-enhanced SOCE in PASMCs and hypoxia-induced increase in pulmonary arterial pressure. Our results demonstrate that hypoxia activates Notch signaling and up-regulates TRPC6 channels. Additionally, treatment with a Notch ligand can mimic hypoxic responses. Finally, inhibition of TRPC6, either pharmacologically or genetically, attenuates HPV, hypoxia-enhanced SOCE, and the development of HPH. These results demonstrate that hypoxia-induced activation of Notch signaling mediates HPV and the development of HPH via functional activation and up-regulation of TRPC6 channels. Understanding the molecular mechanisms that regulate cytosolic free Ca(2+) concentration and PASMC proliferation is critical to elucidation of the pathogenesis of HPH. Targeting Notch regulation of TRPC6 will be beneficial in the development of novel therapies for pulmonary hypertension associated with hypoxia.


Assuntos
Sinalização do Cálcio , Hipertensão Pulmonar/metabolismo , Receptor Notch1/metabolismo , Vasoconstrição , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Hipóxia Celular , Células Cultivadas , Humanos , Hipertensão Pulmonar/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Proteínas Serrate-Jagged , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6
11.
Am J Physiol Regul Integr Comp Physiol ; 309(11): R1347-57, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26377557

RESUMO

An adequate supply of oxygen is important for the survival of all tissues, but it is especially critical for tissues with high-energy demands, such as the heart. Insufficient tissue oxygenation occurs under a variety of conditions, including high altitude, embryonic and fetal development, inflammation, and thrombotic diseases, often affecting multiple organ systems. Responses and adaptations of the heart to hypoxia are of particular relevance in human cardiovascular and pulmonary diseases, in which the effects of hypoxic exposure can range in severity from transient to long-lasting. This study uses the genetic model system Drosophila to investigate cardiac responses to acute (30 min), sustained (18 h), and chronic (3 wk) hypoxia with reoxygenation. Whereas hearts from wild-type flies recovered quickly after acute hypoxia, exposure to sustained or chronic hypoxia significantly compromised heart function upon reoxygenation. Hearts from flies with mutations in sima, the Drosophila homolog of the hypoxia-inducible factor alpha subunit (HIF-α), exhibited exaggerated reductions in cardiac output in response to hypoxia. Heart function in hypoxia-selected flies, selected over many generations for survival in a low-oxygen environment, revealed reduced cardiac output in terms of decreased heart rate and fractional shortening compared with their normoxia controls. Hypoxia-selected flies also had smaller hearts, myofibrillar disorganization, and increased extracellular collagen deposition, consistent with the observed reductions in contractility. This study indicates that longer-duration hypoxic insults exert deleterious effects on heart function that are mediated, in part, by sima and advances Drosophila models for the genetic analysis of cardiac-specific responses to hypoxia and reoxygenation.


Assuntos
Drosophila melanogaster/metabolismo , Hemodinâmica , Hipóxia/metabolismo , Miocárdio/metabolismo , Oxigênio/metabolismo , Adaptação Fisiológica , Animais , Débito Cardíaco , Colágeno/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Feminino , Fibrose , Genótipo , Frequência Cardíaca , Hipóxia/patologia , Hipóxia/fisiopatologia , Mutação , Contração Miocárdica , Miocárdio/patologia , Fenótipo , Recuperação de Função Fisiológica , Fatores de Tempo
12.
Am J Physiol Cell Physiol ; 306(9): C871-8, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24573085

RESUMO

Notch signaling plays a critical role in controlling proliferation and differentiation of pulmonary arterial smooth muscle cells (PASMC). Upregulated Notch ligands and Notch3 receptors in PASMC have been reported to promote the development of pulmonary vascular remodeling in patients with pulmonary arterial hypertension (PAH) and in animals with experimental pulmonary hypertension. Activation of Notch receptors by their ligands leads to the cleavage of the Notch intracellular domain (NICD) to the cytosol by γ-secretase; NICD then translocates into the nucleus to regulate gene transcription. In this study, we examined whether short-term activation of Notch functionally regulates store-operated Ca(2+) entry (SOCE) in human PASMC. Treatment of PASMC with the active fragment of human Jagged-1 protein (Jag-1) for 15-60 min significantly increased the amplitude of SOCE induced by passive deletion of Ca(2+) from the intracellular stores, the sarcoplasmic reticulum (SR). The Jag-1-induced enhancement of SOCE was time dependent: the amplitude was maximized at 30 min of treatment with Jag-1, which was closely correlated with the time course of Jag-1-mediated increase in NICD protein level. The scrambled peptide of Jag-1 active fragment had no effect on SOCE. Inhibition of γ-secretase by N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) significantly attenuated the Jag-1-induced augmentation of SOCE. In addition to the short-term effect, prolonged treatment of PASMC with Jag-1 for 48 h also markedly enhanced the amplitude of SOCE. These data demonstrate that short-term activation of Notch signaling enhances SOCE in PASMC; the NICD-mediated functional interaction with store-operated Ca(2+) channels (SOC) may be involved in the Jag-1-mediated enhancement of SOCE in human PASMC.


Assuntos
Agonistas dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Proteínas de Membrana/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptores Notch/agonistas , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Canais de Cálcio/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Proteína Jagged-1 , Masculino , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Receptores Notch/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Proteínas Serrate-Jagged , Fatores de Tempo
13.
J Physiol ; 592(8): 1839-56, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24492841

RESUMO

When exposed to a hypoxic environment the body's first response is a reflex increase in ventilation, termed the hypoxic ventilatory response (HVR). With chronic sustained hypoxia (CSH), such as during acclimatization to high altitude, an additional time-dependent increase in ventilation occurs, which increases the HVR. This secondary increase persists after exposure to CSH and involves plasticity within the circuits in the central nervous system that control breathing. Currently these mechanisms of HVR plasticity are unknown and we hypothesized that they involve glutamatergic synapses in the nucleus tractus solitarius (NTS), where afferent endings from arterial chemoreceptors terminate. To test this, we treated rats held in normoxia (CON) or 10% O2 (CSH) for 7 days and measured ventilation in conscious, unrestrained animals before and after microinjecting glutamate receptor agonists and antagonists into the NTS. In normoxia, AMPA increased ventilation 25% and 50% in CON and CSH, respectively, while NMDA doubled ventilation in both groups (P < 0.05). Specific AMPA and NMDA receptor antagonists (NBQX and MK801, respectively) abolished these effects. MK801 significantly decreased the HVR in CON rats, and completely blocked the acute HVR in CSH rats but had no effect on ventilation in normoxia. NBQX decreased ventilation whenever it was increased relative to normoxic controls; i.e. acute hypoxia in CON and CSH, and normoxia in CSH. These results support our hypothesis that glutamate receptors in the NTS contribute to plasticity in the HVR with CSH. The mechanism underlying this synaptic plasticity is probably glutamate receptor modification, as in CSH rats the expression of phosphorylated NR1 and GluR1 proteins in the NTS increased 35% and 70%, respectively, relative to that in CON rats.


Assuntos
Aclimatação , Hipóxia/metabolismo , Ventilação Pulmonar , Receptores de Glutamato/metabolismo , Núcleo Solitário/fisiologia , Animais , Células Quimiorreceptoras/efeitos dos fármacos , Células Quimiorreceptoras/metabolismo , Maleato de Dizocilpina/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipóxia/fisiopatologia , Masculino , N-Metilaspartato/farmacologia , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Reflexo , Núcleo Solitário/citologia , Núcleo Solitário/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
14.
Res Vet Sci ; 153: 92-98, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36334407

RESUMO

Clinical diagnostic reports from 508 cases of canine demodicosis diagnosed either by histological or skin scraping analysis from a United Kingdom Accreditation Service (UKAS) accredited veterinary diagnostic laboratory servicing the United Kingdom (UK) and Ireland were evaluated. Of the 508 cases, 284 had skin swabs submitted for culture on the same day the skin biopsy and/or skin scraping were obtained. Dogs with juvenile-onset (JO) demodicosis represented 57.4% of these cases, whilst adult-onset (AO) cases comprised 42.6%. The data revealed that overgrowth of pathogenic bacteria was more common in AO demodicosis cases (75.2%) in comparison to the JO cases (57%). Adult-onset cases also had increased involvement of bacteria belonging to multiple genera and/or yeast (28.9%) in comparison to JO cases (18.4%). Pruritus was significantly associated with an overgrowth of Staphylococcus pseudintermedius (p < 0.001). Resistance to one or more antimicrobial classes was noted in S. pseudintermedius isolates from 56.3% of JO cases with 10.3% of these cases being classified as Multi-Drug Resistant (MDR). Similarly, 51.9% of S. pseudintermedius isolates from the AO cases were noted to be resistant to one or more antimicrobial class with 8.6% of these cases being considered MDR. Cephalosporins were the most frequently administered antimicrobial class noted in submission histories, followed by the penicillin and fluoroquinolone classes. Whilst our findings reveal a high prevalence of concurrent overgrowth of pathogenic bacteria warranting therapeutic intervention in canine demodicosis, the presence of resistance within isolates highlights the need for prudent selection and targeted use of antimicrobial therapy that encompass the key principles of antimicrobial stewardship.

15.
Res Vet Sci ; 153: 99-104, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36334408

RESUMO

Canine demodicosis, due to an overpopulation of Demodex spp. mites, remains one of the most common dermatological diseases encountered in small animal practice. The aims of this study were to interrogate submitted histories and diagnostic report results from a large cohort of dogs (n = 508) diagnosed with demodicosis either through histological analysis or the finding of Demodex spp. mites on skin scrapings by a UKAS accredited commercial laboratory servicing the United Kingdom (UK) and Ireland in the years 2017 and 2018. The main findings revealed that short-coated breeds were more likely to develop juvenile-onset (JO) demodicosis, whereas medium- and long-coated breeds were more likely to develop adult-onset (AO) disease. Pododemodicosis was reported more commonly in adult, long-coated breeds. Skin scrapings were positive in only 83.3% of samples that had a corresponding positive biopsy result; this finding highlights the necessity to perform further diagnostic tests if demodicosis remains clinically suspected despite a negative skin scraping result. Concurrent underlying diseases, potentially associated with immunosuppression, were reported in 42/221 (19%) of dogs with AO demodicosis. Serum allergy and Sarcoptes ELISA assays were positive in individual animals in both the JO and AO groups; the clinical significance of these latter findings requires careful interpretation in dogs with confirmed demodicosis.

16.
Diving Hyperb Med ; 52(4): 237-244, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36525681

RESUMO

INTRODUCTION: Faults or errors during use of closed-circuit rebreathers (CCRs) can cause hypoxia. Military aviators face a similar risk of hypoxia and undergo awareness training to determine their 'hypoxia signature', a personalised, reproducible set of symptoms. We aimed to establish a hypoxia signature among divers, and to investigate their ability to detect hypoxia and self-rescue while cognitively overloaded. METHODS: Eight CCR divers and 12 scuba divers underwent an initial unblinded hypoxia exposure followed by three trials; a second hypoxic trial and two normoxic trials in randomised order. Hypoxia was induced by breathing on a CCR with no oxygen supply. Subjects pedalled on a cycle ergometer while playing a neurocognitive computer game to simulate real world task loading. Subjects identified hypoxia symptoms by pointing to a board listing common hypoxia symptoms, and were instructed to perform a 'bailout' procedure to mimic self-rescue if they perceived hypoxia. Divers were prompted to bailout if peripheral oxygen saturation fell to 75%, or after six minutes during normoxic trials. Subsequently we interviewed subjects to determine their ability to distinguish hypoxia from normoxia. RESULTS: Ninety-five percent of subjects (19/20) showed agreement between unblinded and blinded hypoxia symptoms. Subjects correctly identified the gas mixture in 85% of the trials. During unblinded hypoxia, only 25% (5/20) of subjects performed unprompted bailout. Fifty-five percent of subjects (11/20) correctly performed the bailout but only when prompted, while 15% (3/20) were unable to bailout despite prompting. During blinded hypoxia 45% of subjects (9/20) performed the bailout unprompted while 15% (3/20) remained unable to bailout despite prompting. CONCLUSIONS: Although our data support a normobaric hypoxia signature among both CCR and scuba divers under experimental conditions, most subjects were unable to recognise hypoxia in real time and perform a self-rescue unprompted, although this improved in the second hypoxia trial. These results do not support hypoxia exposure training for CCR divers.


Assuntos
Mergulho , Humanos , Hipóxia , Respiração
17.
Front Physiol ; 13: 885295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035495

RESUMO

The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.

18.
Am J Physiol Regul Integr Comp Physiol ; 301(2): R343-50, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21593425

RESUMO

During ventilatory acclimatization to hypoxia (VAH), time-dependent increases in ventilation lower Pco(2) levels, and this persists on return to normoxia. We hypothesized that plasticity in the caudal nucleus tractus solitarii (NTS) contributes to VAH, as the NTS receives the first synapse from the carotid body chemoreceptor afferents and also contains CO(2)-sensitive neurons. We lesioned cells in the caudal NTS containing the neurokinin-1 receptor by microinjecting the neurotoxin saporin conjugated to substance P and measured ventilatory responses in awake, unrestrained rats 18 days later. Lesions did not affect hypoxic or hypercapnic ventilatory responses in normoxic control rats, in contrast to published reports for similar lesions in other central chemosensitive areas. Also, lesions did not affect the hypercapnic ventilatory response in chronically hypoxic rats (inspired Po(2) = 90 Torr for 7 days). These results suggest functional differences between central chemoreceptor sites. However, lesions significantly increased ventilation in normoxia or acute hypoxia in chronically hypoxic rats. Hence, chronic hypoxia increases an inhibitory effect of neurokinin-1 receptor neurons in the NTS on ventilatory drive, indicating that these neurons contribute to plasticity during chronic hypoxia, although such plasticity does not explain VAH.


Assuntos
Hipóxia/fisiopatologia , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Proteínas Inativadoras de Ribossomos Tipo 1/toxicidade , Núcleo Solitário/efeitos dos fármacos , Substância P/toxicidade , Animais , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Estado de Consciência , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Oxigênio/metabolismo , Oxigênio/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores da Neurocinina-1/metabolismo , Saporinas , Núcleo Solitário/citologia
19.
Front Physiol ; 12: 571137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33737880

RESUMO

Concern is often voiced over the ongoing loss of atmospheric O2. This loss, which is caused by fossil-fuel burning but also influenced by other processes, is likely to continue at least for the next few centuries. We argue that this loss is quite well understood, and the eventual decrease is bounded by the fossil-fuel resource base. Because the atmospheric O2 reservoir is so large, the predicted relative drop in O2 is very small even for extreme scenarios of future fossil-fuel usage which produce increases in atmospheric CO2 sufficient to cause catastrophic climate changes. At sea level, the ultimate drop in oxygen partial pressure will be less than 2.5 mm Hg out of a baseline of 159 mmHg. The drop by year 2300 is likely to be between 0.5 and 1.3 mmHg. The implications for normal human health is negligible because respiratory O2 consumption in healthy individuals is only weakly dependent on ambient partial pressure, especially at sea level. The impacts on top athlete performance, on disease, on reproduction, and on cognition, will also be very small. For people living at higher elevations, the implications of this loss will be even smaller, because of a counteracting increase in barometric pressure at higher elevations due to global warming.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa