RESUMO
The dried bean beetle, Acanthoscelides obtectus, is an economically important pest of stored legumes worldwide. Tracking the human-aided dispersion of its primary hosts, the Phaseolus vulgaris beans, it is now widespread in most bean-growing areas of the tropics and subtropics. In temperate regions where it can only occasionally overwinter in the field, A. obtectus proliferates in granaries, having multiple generations a year. Despite its negative impact on food production, no sensitive detection or monitoring tools exist, and the reduction of local populations still relies primarily on inorganic insecticides as fumigating agents. However, in the quest to produce more nutritious food more sustainably and healthily, the development of environmentally benign crop protection methods is vital against A. obtectus. For this, knowledge of the biology and chemistry of both the host plant and its herbivore will underpin the development of, among others, chemical ecology-based approaches to form an essential part of the toolkit of integrated bruchid management. We review the semiochemistry of the mate- and host-finding behaviour of A. obtectus and provide new information about the effect of seed chemistry on the sensory and behavioural ecology of host acceptance and larval development.
RESUMO
Root elongation depends on the action of the gibberellin (GA) growth hormones, which promote cell production in the root meristem and cell expansion in the elongation zone. Sites of GA biosynthesis in the roots of 7-d-old Arabidopsis thaliana seedlings were investigated using tissue-specific GA inactivation in wild-type (Col-0) or rescue of GA-deficient dwarf mutants. Tissue-specific GA depletion was achieved by ectopic expression of the GA-inactivating enzyme AtGA2ox2, which is specific for C19 -GAs, and AtGA2ox7, which acts on C20 -GA precursors. In addition, tissue-specific rescue of ga20ox triple and ga3ox double mutants was shown. Furthermore, GUS reporter lines for major GA20ox, GA3ox and GA2ox genes were used to observe their expression domains in the root. The effects of expressing these constructs on the lengths of the root apical meristem and cortical cells in the elongation zone confirmed that roots are autonomous for GA biosynthesis, which occurs in multiple tissues, with the endodermis a major site of synthesis. The results are consistent with the early stages of GA biosynthesis within the root occurring in the meristematic region and indicate that the penultimate step of GA biosynthesis, GA 20-oxidation, is required in both the meristem and elongation zone.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas , Meristema/metabolismoRESUMO
Malaria parasites (Plasmodium) can change the attractiveness of their vertebrate hosts to Anopheles vectors, leading to a greater number of vector-host contacts and increased transmission. Indeed, naturally Plasmodium-infected children have been shown to attract more mosquitoes than parasite-free children. Here, we demonstrate Plasmodium-induced increases in the attractiveness of skin odor in Kenyan children and reveal quantitative differences in the production of specific odor components in infected vs. parasite-free individuals. We found the aldehydes heptanal, octanal, and nonanal to be produced in greater amounts by infected individuals and detected by mosquito antennae. In behavioral experiments, we demonstrated that these, and other, Plasmodium-induced aldehydes enhanced the attractiveness of a synthetic odor blend mimicking "healthy" human odor. Heptanal alone increased the attractiveness of "parasite-free" natural human odor. Should the increased production of these aldehydes by Plasmodium-infected humans lead to increased mosquito biting in a natural setting, this would likely affect the transmission of malaria.
Assuntos
Anopheles/fisiologia , Malária , Mosquitos Vetores/fisiologia , Odorantes , Plasmodium/metabolismo , Animais , Criança , Pré-Escolar , Feminino , Humanos , Malária/metabolismo , Malária/transmissão , MasculinoRESUMO
Since starch is by far the major component of the mature wheat grain, it has been assumed that variation in the capacity for starch synthesis during grain filling can influence final grain weight. We investigated this assumption by studying a total of 54 wheat genotypes including elite varieties and landraces that were grown in two successive years in fields in the east of England. The weight, water content, sugars, starch, and maximum catalytic activities of two enzymes of starch biosynthesis, ADP-glucose pyrophosphorylase and soluble starch synthase, were measured during grain filling. The relationships between these variables and the weights and starch contents of mature grains were analysed. Final grain weight showed few or no significant correlations with enzyme activities, sugar levels, or starch content during grain filling, or with starch content at maturity. We conclude that neither sugar availability nor enzymatic capacity for starch synthesis during grain filling significantly influenced final grain weight in our field conditions. We suggest that final grain weight may be largely determined by developmental processes prior to grain filling. Starch accumulation then fills the grain to a physical limit set by developmental processes. This conclusion is in accord with those from previous studies in which source or sink strength has been artificially manipulated.
Assuntos
Glucose-1-Fosfato Adenililtransferase/genética , Proteínas de Plantas/genética , Sintase do Amido/genética , Triticum/fisiologia , Grão Comestível/enzimologia , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/fisiologia , Inglaterra , Glucose-1-Fosfato Adenililtransferase/metabolismo , Proteínas de Plantas/metabolismo , Sintase do Amido/metabolismo , Triticum/enzimologia , Triticum/crescimento & desenvolvimentoRESUMO
Gradients exist in the distribution of storage proteins in the wheat (Triticum aestivum) endosperm and determine the milling properties and protein recovery rate of the grain. A novel image analysis technique was developed to quantify both the gradients in protein concentration, and the size distribution of protein bodies within the endosperm of wheat plants grown under two different (20 or 28 °C) post-anthesis temperatures, and supplied with a nutrient solution with either high or low nitrogen content. Under all treatment combinations, protein concentration was greater in the endosperm cells closest to the aleurone layer and decreased towards the centre of the two lobes of the grain, i.e. a negative gradient. This was accompanied by a decrease in size of protein bodies from the outer to the inner endosperm layers in all but one of the treatments. Elevated post-anthesis temperature had the effect of increasing the magnitude of the negative gradients in both protein concentration and protein body size, whilst limiting nitrogen supply decreased the gradients.
Assuntos
Endosperma/fisiologia , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Temperatura , Triticum/fisiologia , Ensaios de Triagem em Larga EscalaRESUMO
This study compares dry matter losses and quality changes during the storage of SRC willow as chips and as rods. A wood chip stack consisting of approximately 74 tonnes of fresh biomass, or 31 tonnes dry matter (DM) was built after harvesting in the spring. Three weeks later, four smaller stacks of rods with an average weight of 0.8 tonnes, or 0.4 tonnes DM were built. During the course of the experiment temperature recorders placed in the stacks found that the wood chip pile reached 60⯰C within 10 days of construction, but the piles of rods remained mostly at ambient temperatures. Dry matter losses were calculated by using pre-weighed independent samples within the stacks and by weighing the whole stack before and after storage. After 6 months the wood chip stack showed a DM loss of between 19.8 and 22.6%, and mean losses of 23.1% were measured from the 17 independent samples. In comparison, the rod stacks showed an average stack DM loss of between 0 and 9%, and between 1.4% and 10.6% loss from the independent samples. Analysis of the stored material suggests that storing willow in small piles of rods produces a higher quality fuel in terms of lower moisture and ash content; however, it has a higher fine content compared to storage in chip form. Therefore, according to the two storage methods tested here, there may be a compromise between maximising the net dry matter yield from SRC willow and the final fine content of the fuel.
RESUMO
Elicitation of plant defense signaling that results in altered emission of volatile organic compounds (VOCs) offers opportunities for protecting plants against arthropod pests. In this study, we treated potato, Solanum tuberosum L., with the plant defense elicitor cis-jasmone (CJ), which induces the emission of defense VOCs and thus affects the behavior of herbivores. Using chemical analysis, electrophysiological and behavioral assays with the potato-feeding aphid Macrosiphum euphorbiae, we showed that CJ treatment substantially increased the emission of defense VOCs from potatoes compared to no treatment. Coupled GC-electroantennogram (GC-EAG) recordings from the antennae of M. euphorbiae showed robust responses to 14 compounds present in induced VOCs, suggesting their behavioral role in potato/aphid interactions. Plants treated with CJ and then challenged with M. euphorbiae were most repellent to alate M. euphorbiae. Principal component analysis (PCA) of VOC collections suggested that (E)-2-hexenal, (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), (E)-ß-farnesene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate (MeSA), CJ, and methyl benzoate (MeBA) were the main VOCs contributing to aphid behavioral responses, and that production of TMTT, (E)-ß-farnesene, CJ, and DMNT correlated most strongly with aphid repellency. Our findings confirm that CJ can enhance potato defense against aphids by inducing production of VOCs involved in aphid-induced signalling.
Assuntos
Afídeos/fisiologia , Ciclopentanos/farmacologia , Interações Hospedeiro-Parasita , Oxilipinas/farmacologia , Solanum tuberosum/efeitos dos fármacos , Animais , Comportamento Animal , Fenômenos Eletrofisiológicos , Feminino , Olfatometria , Compostos Fitoquímicos/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/parasitologia , Estresse Fisiológico/fisiologia , Compostos Orgânicos Voláteis/metabolismoRESUMO
The hemibiotrophic fungus Zymoseptoria tritici causes Septoria tritici blotch disease of wheat (Triticum aestivum). Pathogen reproduction on wheat occurs without cell penetration, suggesting that dynamic and intimate intercellular communication occurs between fungus and plant throughout the disease cycle. We used deep RNA sequencing and metabolomics to investigate the physiology of plant and pathogen throughout an asexual reproductive cycle of Z. tritici on wheat leaves. Over 3,000 pathogen genes, more than 7,000 wheat genes, and more than 300 metabolites were differentially regulated. Intriguingly, individual fungal chromosomes contributed unequally to the overall gene expression changes. Early transcriptional down-regulation of putative host defense genes was detected in inoculated leaves. There was little evidence for fungal nutrient acquisition from the plant throughout symptomless colonization by Z. tritici, which may instead be utilizing lipid and fatty acid stores for growth. However, the fungus then subsequently manipulated specific plant carbohydrates, including fructan metabolites, during the switch to necrotrophic growth and reproduction. This switch coincided with increased expression of jasmonic acid biosynthesis genes and large-scale activation of other plant defense responses. Fungal genes encoding putative secondary metabolite clusters and secreted effector proteins were identified with distinct infection phase-specific expression patterns, although functional analysis suggested that many have overlapping/redundant functions in virulence. The pathogenic lifestyle of Z. tritici on wheat revealed through this study, involving initial defense suppression by a slow-growing extracellular and nutritionally limited pathogen followed by defense (hyper) activation during reproduction, reveals a subtle modification of the conceptual definition of hemibiotrophic plant infection.
Assuntos
Ascomicetos/metabolismo , Cromossomos Fúngicos/genética , Metaboloma/genética , Imunidade Vegetal , Transcriptoma/genética , Triticum/imunologia , Triticum/microbiologia , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Progressão da Doença , Frutanos/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Hexoses/metabolismo , Família Multigênica , Nitratos/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Reprodução Assexuada , Ácido Salicílico/metabolismo , Análise de Sequência de RNA , Fatores de TempoRESUMO
Arabidopsis thaliana seed maturation is accompanied by the deposition of storage oil, rich in the essential ω-3 polyunsaturated fatty acid α-linolenic acid (ALA). The synthesis of ALA is highly responsive to the level of fatty acid desaturase3 (FAD3) expression, which is strongly upregulated during embryogenesis. By screening mutants in leafy cotyledon1 (LEC1)-inducible transcription factors using fatty acid profiling, we identified two mutants (lec1-like and bzip67) with a seed lipid phenotype. Both mutants share a substantial reduction in seed ALA content. Using a combination of in vivo and in vitro assays, we show that bZIP67 binds G-boxes in the FAD3 promoter and enhances FAD3 expression but that activation is conditional on bZIP67 association with LEC1-like (L1L) and nuclear factor-YC2 (NF-YC2). Although FUSCA3 and abscisic acid insensitive3 are required for L1L and bZIP67 expression, neither protein is necessary for [bZIP67:L1L:NF-YC2] to activate FAD3. We conclude that a transcriptional complex containing L1L, NF-YC2, and bZIP67 is induced by LEC1 during embryogenesis and specifies high levels of ALA production for storage oil by activating FAD3 expression.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , DNA Bacteriano/genética , Ativação Enzimática , Ácidos Graxos Dessaturases/genética , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Mutação/genética , Tamanho do Órgão , Fosfatidilcolinas/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Ativação Transcricional/genética , Triglicerídeos/metabolismoRESUMO
According to the Arg/N-end rule pathway, proteins with basic N-termini are targeted for degradation by the Arabidopsis thaliana E3 ligase, PROTEOLYSIS6 (PRT6). Proteins can also become PRT6 substrates following post-translational arginylation by arginyltransferases ATE1 and 2. Here, we undertook a quantitative proteomics study of Arg/N-end rule mutants, ate1/2 and prt6, to investigate the impact of this pathway on the root proteome. Tandem mass tag labelling identified a small number of proteins with increased abundance in the mutants, some of which represent downstream targets of transcription factors known to be N-end rule substrates. Isolation of N-terminal peptides using terminal amine isotope labelling of samples (TAILS) combined with triple dimethyl labelling identified 1465 unique N-termini. Stabilising residues were over-represented among the free neo-N-termini, but destabilising residues were not markedly enriched in N-end rule mutants. The majority of free neo-N-termini were revealed following cleavage of organellar targeting signals, thus compartmentation may account in part for the presence of destabilising residues in the wild-type N-terminome. Our data suggest that PRT6 does not have a marked impact on the global proteome of Arabidopsis roots and is likely involved in the controlled degradation of relatively few regulatory proteins. All MS data have been deposited in the ProteomeXchange with identifier PXD001719 (http://proteomecentral.proteomexchange.org/dataset/PXD001719).
Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Acetilação , Aminoaciltransferases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mutação , Raízes de Plantas/genética , Proteólise , Proteômica , Ubiquitina-Proteína Ligases/genéticaRESUMO
Septoria tritici blotch (STB) caused by the Ascomycete fungus Zymoseptoria tritici is one of the most economically damaging diseases of wheat worldwide. Z. tritici is currently a major target for agricultural fungicides, especially in temperate regions where it is most prevalent. Many fungicides target electron transfer enzymes because these are often important for cell function. Therefore characterisation of genes encoding such enzymes may be important for the development of novel disease intervention strategies. Microsomal cytochrome b5 reductases (CBRs) are an important family of electron transfer proteins which in eukaryotes are involved in the biosynthesis of fatty acids and complex lipids including sphingolipids and sterols. Unlike the model yeast Saccharomyces cerevisiae which possesses only one microsomal CBR, the fully sequenced genome of Z. tritici bears three possible microsomal CBRs. RNA sequencing analysis revealed that ZtCBR1 is the most highly expressed of these genes under all in vitro and in planta conditions tested, therefore ΔZtCBR1 mutant strains were generated through targeted gene disruption. These strains exhibited delayed disease symptoms on wheat leaves and severely limited asexual sporulation. ΔZtCBR1 strains also exhibited aberrant spore morphology and hyphal growth in vitro. These defects coincided with alterations in fatty acid, sphingolipid and sterol biosynthesis observed through GC-MS and HPLC analyses. Data is presented which suggests that Z. tritici may use ZtCBR1 as an additional electron donor for key steps in ergosterol biosynthesis, one of which is targeted by azole fungicides. Our study reports the first functional characterisation of CBR gene family members in a plant pathogenic filamentous fungus. This also represents the first direct observation of CBR functional ablation impacting upon fungal sterol biosynthesis.
Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Citocromo-B(5) Redutase/genética , Citocromo-B(5) Redutase/metabolismo , Ascomicetos/patogenicidade , Ácidos Graxos/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Genoma Fúngico , Éteres Metílicos/metabolismo , Fases de Leitura Aberta , Fenótipo , Doenças das Plantas/microbiologia , Análise de Sequência de RNA , Esporos Fúngicos , Esteróis/metabolismo , Triticum/microbiologia , Virulência/genéticaRESUMO
The transformation of the ovary into a fruit after successful completion of pollination and fertilization has been associated with many changes at transcriptomic level. These changes are part of a dynamic and complex regulatory network that is controlled by phytohormones, with a major role for auxin. One of the auxin-related genes differentially expressed upon fruit set and early fruit development in tomato is Solanum lycopersicum AUXIN RESPONSE FACTOR 9 (SlARF9). Here, the functional analysis of this ARF is described. SlARF9 expression was found to be auxin-responsive and SlARF9 mRNA levels were high in the ovules, placenta, and pericarp of pollinated ovaries, but also in other plant tissues with high cell division activity, such as the axillary meristems and root meristems. Transgenic plants with increased SlARF9 mRNA levels formed fruits that were smaller than wild-type fruits because of reduced cell division activity, whereas transgenic lines in which SlARF9 mRNA levels were reduced showed the opposite phenotype. The expression analysis, together with the phenotype of the transgenic lines, suggests that, in tomato, ARF9 negatively controls cell division during early fruit development.
Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Divisão Celular , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente ModificadasRESUMO
Gibberellin (GA) biosynthesis is necessary for normal plant development, with later GA biosynthetic stages being governed by multigene families. Arabidopsis thaliana contains five GA 20-oxidase (GA20ox) genes, and past work has demonstrated the importance of GA20ox1 and -2 for growth and fertility. Here, we show through systematic mutant analysis that GA20ox1, -2, and -3 are the dominant paralogs; their absence results in severe dwarfism and almost complete loss of fertility. In vitro analysis revealed that GA20ox4 has full GA20ox activity, but GA20ox5 catalyzes only the first two reactions of the sequence by which GA(12) is converted to GA(9). GA20ox3 functions almost entirely redundantly with GA20ox1 and -2 at most developmental stages, including the floral transition, while GA20ox4 and -5 have very minor roles. These results are supported by analysis of the gene expression patterns in promoter:ß-glucuronidase reporter lines. We demonstrate that fertility is highly sensitive to GA concentration, that GA20ox1, -2, and -3 have significant effects on floral organ growth and anther development, and that both GA deficiency and overdose impact on fertility. Loss of GA20ox activity causes anther developmental arrest, with the tapetum failing to degrade. Some phenotypic recovery of late flowers in GA-deficient mutants, including ga1-3, indicated the involvement of non-GA pathways in floral development.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Flores/crescimento & desenvolvimento , Oxigenases de Função Mista/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Flores/enzimologia , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Giberelinas/biossíntese , Oxigenases de Função Mista/genética , Mutação , Filogenia , Infertilidade das Plantas , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimentoRESUMO
Males of Acanthoscelides obtectus (Coleoptera: Chrysomelidae, Bruchinae) emit methyl (E,R)-2,4,5-tetradecatrienoate that attracts females for mating. This study identified further roles for this compound in the sexual behavior of A. obtectus. Earlier observations revealed that males touched females with their antennae while tandem-running with them and initiated mounting and copulation, whereas they showed no such behavior toward other males. A series of subsequent laboratory choice tests were set up to establish if certain cuticular compounds aid contact sex recognition in A. obtectus. Males chose virgin females over other males. The activity toward females could be eliminated by rinsing with hexane, but was regained by application of female extract onto previously rinsed females. Gas chromatographic (GC) comparison of hexane extracts revealed the presence of two male-specific compounds, methyl (E,R)-2,4,5-tetradecatrienoate and octadecanal, which were absent from the behaviorally active female samples. Of the two compounds, methyl (E,R)-2,4,5-tetradecatrienoate was found to be responsible for the inhibition of male sexual behavior, similar to that observed with crude male extracts applied to virgin females. Furthermore, males preferred virgin over mated females. GC analyses revealed the presence of methyl (E,R)-2,4,5-tetradecatrienoate in mated females in amounts sufficient to curtail mating attempts. It appears that methyl (E,R)-2,4,5-tetradecatrienoate, besides being a male-produced sex pheromone, acts as a male-recognition signal in A. obtectus. Males also transfer it onto females during mating, resulting in mated females being avoided by courting males.
Assuntos
Besouros/fisiologia , Atrativos Sexuais/farmacologia , Caracteres Sexuais , Comportamento Sexual Animal/efeitos dos fármacos , Animais , Bioensaio , Besouros/química , Besouros/efeitos dos fármacos , Feminino , Controle de Insetos , MasculinoRESUMO
Asparagine is the predominant free amino acid in potato tubers and the present study aimed to establish whether it is imported from the leaves or synthesised in situ. Free amino acid concentrations are important quality determinants for potato tubers because they react with reducing sugars at high temperatures in the Maillard reaction. This reaction produces melanoidin pigments and a host of aroma and flavour volatiles, but if free asparagine participates in the final stages, it results in the production of acrylamide, an undesirable contaminant. ¹4CO2 was supplied to a leaf or leaves of potato plants (cv. Saturna) in the light and radioactivity incorporated into amino acids was determined in the leaves, stems, stolons and tubers. Radioactivity was found in free amino acids, including asparagine, in all tissues, but the amount incorporated in asparagine transported to the tubers and stolons was much less than that in glutamate, glutamine, serine and alanine. The study showed that free asparagine does not play an important role in the transport of nitrogen from leaf to tuber in potato, and that the high concentrations of free asparagine that accumulate in potato tubers arise from synthesis in situ. This indicates that genetic interventions to reduce free asparagine concentration in potato tubers will have to target asparagine metabolism in the tuber.
Assuntos
Aminoácidos/metabolismo , Radioisótopos de Carbono/metabolismo , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Asparagina/metabolismo , Radioisótopos de Carbono/análise , Fotossíntese , Folhas de Planta/metabolismo , Contagem de CintilaçãoRESUMO
Excessive gibberellin (GA) signalling, mediated through the DELLA proteins, has a negative impact on plant fertility. Loss of DELLA activity in the monocot rice (Oryza sativa) causes complete male sterility, but not in the dicot model Arabidopsis (Arabidopsis thaliana) ecotype Landsberg erecta (Ler), in which DELLA function has been studied most extensively, leading to the assumption that DELLA activity is not essential for Arabidopsis pollen development. A novel DELLA fertility phenotype was identified in the Columbia (Col-0) ecotype that necessitates re-evaluation of the general conclusions drawn from Ler. Fertility phenotypes were compared between the Col-0 and Ler ecotypes under conditions of chemical and genetic GA overdose, including mutants in both ecotypes lacking the DELLA paralogues REPRESSOR OF ga1-3 (RGA) and GA INSENSITIVE (GAI). Ler displays a less severe fertility phenotype than Col-0 under GA treatment. Col-0 rga gai mutants, in contrast with the equivalent Ler phenotype, were entirely male sterile, caused by post-meiotic defects in pollen development, which were rescued by the reintroduction of DELLA into either the tapetum or developing pollen. We conclude that DELLA activity is essential for Arabidopsis pollen development. Differences between the fertility responses of Col-0 and Ler might be caused by differences in downstream signalling pathways or altered DELLA expression.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Ecótipo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Proteínas Repressoras/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Teste de Complementação Genética , Meiose , Mutação/genética , Infertilidade das Plantas , Pólen/citologia , Proteínas Repressoras/genéticaRESUMO
We report that the F-box/Kelch-repeat protein At2g44130 is specifically induced by the root-knot nematode Meloidogyne incognita during the initial stages of the initiation and maintenance of the feeding site. In addition, we show that the expression of this gene promotes susceptibility of infection because knocking down the F-box gene (At2g44130) drastically reduces nematode attraction to and infection of roots. In contrast, F-box overexpressing (OE) lines had a hypersusceptible phenotype, with an increase of 34% in nematode attraction and 67% in nematode infection when grown in soil. This hypersusceptibility might be the result of an increased attraction of the second-stage juveniles toward root exudates of the F-box OE, which would suggest that the blend of compounds in the root exudates of the OE line was somewhat different from the ones present in the root exudates of the wild type and the F-box knockout and tilling lines. Although the function of the F-box/Kelch-repeat protein (At2g44130) is not known, we postulate that its activation by nematode effectors released during the infection process leads to the formation of SCF((At2g44130)) (Skp1-Cullin1-F-box protein) complexes, which are involved in facilitating successful infection by the nematode through targeting specific proteins for degradation.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Doenças das Plantas/parasitologia , Tylenchoidea/fisiologia , Animais , Arabidopsis/citologia , Arabidopsis/parasitologia , Proteínas de Arabidopsis/metabolismo , Bioensaio , Suscetibilidade a Doenças , Proteínas F-Box/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Células Gigantes/parasitologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/parasitologia , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/parasitologia , Plantas Geneticamente Modificadas , Regulação para CimaRESUMO
Increasing the productivity of oilseed crops is an important challenge for plant breeders and biotechnologists. To date, attempts to increase oil production in seeds via metabolic pathway engineering have focused on boosting synthetic capacity. However, in the tissues of many organisms, it is well established that oil levels are determined by both anabolism and catabolism. Indeed, the oil content of rapeseed (Brassica napus L.) has been reported to decline by approximately 10% in the final stage of development, as the seeds desiccate. Here, we show that RNAi suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase gene family during seed development results in up to an 8% gain in oil yield on either a seed, plant or unit area basis in the greenhouse, with very little adverse impact on seed vigour. Suppression of lipolysis could therefore constitute a new method for enhancing oil yield in oilseed crops.
Assuntos
Brassica napus/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo , Brassica napus/crescimento & desenvolvimento , Dessecação , Família Multigênica , Interferência de RNA , Sementes/crescimento & desenvolvimentoRESUMO
The biosynthesis of gibberellic acid (GA(3)) by the fungus Fusarium fujikuroi is catalyzed by seven enzymes encoded in a gene cluster. While four of these enzymes are characterized as cytochrome P450 monooxygenases, the nature of a fifth oxidase, GA(4) desaturase (DES), is unknown. DES converts GA(4) to GA(7) by the formation of a carbon-1,2 double bond in the penultimate step of the pathway. Here, we show by expression of the des complementary DNA in Escherichia coli that DES has the characteristics of a 2-oxoglutarate-dependent dioxygenase. Although it has low amino acid sequence homology with known 2-oxoglutarate-dependent dioxygenases, putative iron- and 2-oxoglutarate-binding residues, typical of such enzymes, are apparent in its primary sequence. A survey of sequence databases revealed that homologs of DES are widespread in the ascomycetes, although in most cases the homologs must participate in non-gibberellin (GA) pathways. Expression of des from the cauliflower mosaic virus 35S promoter in the plant species Solanum nigrum, Solanum dulcamara, and Nicotiana sylvestris resulted in substantial growth stimulation, with a 3-fold increase in height in S. dulcamara compared with controls. In S. nigrum, the height increase was accompanied by a 20-fold higher concentration of GA(3) in the growing shoots than in controls, although GA(1) content was reduced. Expression of des was also shown to partially restore growth in plants dwarfed by ectopic expression of a GA 2-oxidase (GA-deactivating) gene, consistent with GA(3) being protected from 2-oxidation. Thus, des has the potential to enable substantial growth increases, with practical implications, for example, in biomass production.