RESUMO
The present vaccine against influenza virus has the inevitable risk of antigenic discordance between the vaccine and the circulating strains, which diminishes vaccine efficacy. This necessitates new approaches that provide broader protection against influenza. Here we designed a vaccine using the hypervariable receptor-binding domain (RBD) of viral hemagglutinin displayed on a nanoparticle (np) able to elicit antibody responses that neutralize H1N1 influenza viruses spanning over 90 years. Co-display of RBDs from multiple strains across time, so that the adjacent RBDs are heterotypic, provides an avidity advantage to cross-reactive B cells. Immunization with the mosaic RBD-np elicited broader antibody responses than those induced by an admixture of nanoparticles encompassing the same set of RBDs as separate homotypic arrays. Furthermore, we identified a broadly neutralizing monoclonal antibody in a mouse immunized with mosaic RBD-np. The mosaic antigen array signifies a unique approach that subverts monotypic immunodominance and allows otherwise subdominant cross-reactive B cell responses to emerge.
Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Nanopartículas/química , Infecções por Orthomyxoviridae/imunologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/virologia , Reações Cruzadas/efeitos dos fármacos , Reações Cruzadas/imunologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Imunização , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/química , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologiaRESUMO
In the version of this article initially published, the labels (50 Å) above the scale bars in Fig. 1b were incorrect. The correct size is 50 nm. The error has been corrected in the HTML and PDF versions of the article.
RESUMO
Current influenza vaccines predominantly induce immunity to the hypervariable hemagglutinin (HA) head, requiring frequent vaccine reformulation. Conversely, the immunosubdominant yet conserved HA stem harbors a supersite that is targeted by broadly neutralizing antibodies (bnAbs), representing a prime target for universal vaccines. Here, we showed that the co-immunization of two HA stem immunogens derived from group 1 and 2 influenza A viruses elicits cross-group protective immunity and neutralizing antibody responses in mice, ferrets, and nonhuman primates (NHPs). Immunized mice were protected from multiple group 1 and 2 viruses, and all animal models showed broad serum-neutralizing activity. A bnAb isolated from an immunized NHP broadly neutralized and protected against diverse viruses, including H5N1 and H7N9. Genetic and structural analyses revealed strong homology between macaque and human bnAbs, illustrating common biophysical constraints for acquiring cross-group specificity. Vaccine elicitation of stem-directed cross-group-protective immunity represents a step toward the development of broadly protective influenza vaccines.
Assuntos
Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Hemaglutininas , Anticorpos Amplamente Neutralizantes , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Anticorpos Antivirais , Furões , Anticorpos Neutralizantes , ImunizaçãoRESUMO
Antibodies capable of neutralizing divergent influenza A viruses could form the basis of a universal vaccine. Here, from subjects enrolled in an H5N1 DNA/MIV-prime-boost influenza vaccine trial, we sorted hemagglutinin cross-reactive memory B cells and identified three antibody classes, each capable of neutralizing diverse subtypes of group 1 and group 2 influenza A viruses. Co-crystal structures with hemagglutinin revealed that each class utilized characteristic germline genes and convergent sequence motifs to recognize overlapping epitopes in the hemagglutinin stem. All six analyzed subjects had sequences from at least one multidonor class, and-in half the subjects-multidonor-class sequences were recovered from >40% of cross-reactive B cells. By contrast, these multidonor-class sequences were rare in published antibody datasets. Vaccination with a divergent hemagglutinin can thus increase the frequency of B cells encoding broad influenza A-neutralizing antibodies. We propose the sequence signature-quantified prevalence of these B cells as a metric to guide universal influenza A immunization strategies.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Adulto , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/química , Anticorpos Antivirais/genética , Linfócitos B/imunologia , Epitopos de Linfócito B , Feminino , Rearranjo Gênico de Cadeia Pesada de Linfócito B , Humanos , Memória Imunológica , Virus da Influenza A Subtipo H5N1/imunologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Adulto JovemRESUMO
Immunodominance (ID) defines the hierarchical immune response to competing antigens in complex immunogens. Little is known regarding B cell and antibody ID despite its importance in immunity to viruses and other pathogens. We show that B cells and serum antibodies from inbred mice demonstrate a reproducible ID hierarchy to the five major antigenic sites in the influenza A virus hemagglutinin globular domain. The hierarchy changed as the immune response progressed, and it was dependent on antigen formulation and delivery. Passive antibody transfer and sequential infection experiments demonstrated 'original antigenic suppression', a phenomenon in which antibodies suppress memory responses to the priming antigenic site. Our study provides a template for attaining deeper understanding of antibody ID to viruses and other complex immunogens.
Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Epitopos Imunodominantes/imunologia , Viroses/imunologia , Vírus/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/química , Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Patrimônio Genético , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Interações Hospedeiro-Patógeno/genética , Imunização , Epitopos Imunodominantes/química , Memória Imunológica , Vírus da Influenza A/imunologia , Linfonodos/imunologia , Camundongos , Modelos Moleculares , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Conformação Proteica , Viroses/genética , Viroses/virologiaRESUMO
Despite the availability of seasonal vaccines and antiviral medications, influenza virus continues to be a major health concern and pandemic threat due to the continually changing antigenic regions of the major surface glycoprotein, hemagglutinin (HA). One emerging strategy for the development of more efficacious seasonal and universal influenza vaccines is structure-guided design of nanoparticles that display conserved regions of HA, such as the stem. Using the H1 HA subtype to establish proof of concept, we found that tandem copies of an alpha-helical fragment from the conserved stem region (helix-A) can be displayed on the protruding spikes structures of a capsid scaffold. The stem region of HA on these designed chimeric nanoparticles is immunogenic and the nanoparticles are biochemically robust in that heat exposure did not destroy the particles and immunogenicity was retained. Furthermore, mice vaccinated with H1-nanoparticles were protected from lethal challenge with H1N1 influenza virus. By using a nanoparticle library approach with this helix-A nanoparticle design, we show that this vaccine nanoparticle construct design could be applicable to different influenza HA subtypes. Importantly, antibodies elicited by H1, H5, and H7 nanoparticles demonstrated homosubtypic and heterosubtypic cross-reactivity binding to different HA subtypes. Also, helix-A nanoparticle immunizations were used to isolate mouse monoclonal antibodies that demonstrated heterosubtypic cross-reactivity and provided protection to mice from viral challenge via passive-transfer. This tandem helix-A nanoparticle construct represents a novel design to display several hundred copies of non-trimeric conserved HA stem epitopes on vaccine nanoparticles. This design concept provides a new approach to universal influenza vaccine development strategies and opens opportunities for the development of nanoparticles with broad coverage over many antigenically diverse influenza HA subtypes.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Nanopartículas , Animais , Camundongos , Humanos , Hemaglutininas , Epitopos , Formação de AnticorposRESUMO
Patients with severe aplastic anaemia (SAA) are often not vaccinated against viruses due to concerns of ineffective protective antibody response and potential for pathogenic global immune system activation, leading to relapse. We evaluated the impact of COVID-19 vaccination on haematological indices and disease status and characterized the humoural and cellular responses to vaccination in 50 SAA patients, who were previously treated with immunosuppressive therapy (IST). There was no significant difference in haemoglobin (p = 0.52), platelet count (p = 0.67), absolute lymphocyte (p = 0.42) and neutrophil (p = 0.98) counts prior to and after completion of vaccination series. Relapse after vaccination, defined as a progressive decline in counts requiring treatment, occurred in three patients (6%). Humoural response was detectable in 90% (28/31) of cases by reduction in an in-vitro Angiotensin II Converting Enzyme (ACE2) binding and neutralization assay, even in patients receiving ciclosporin (10/11, 90.1%). Comparison of spike-specific T-cell responses in 27 SAA patients and 10 control subjects revealed qualitatively similar CD4+ Th1-dominant responses to vaccination. There was no difference in CD4+ (p = 0.77) or CD8+ (p = 0.74) T-cell responses between patients on or off ciclosporin therapy at the time of vaccination. Our data highlight appropriate humoural and cellular responses in SAA previously treated with IST and true relapse after vaccination is rare.
Assuntos
Anemia Aplástica , COVID-19 , Humanos , Anemia Aplástica/tratamento farmacológico , Ciclosporina/uso terapêutico , Vacinas contra COVID-19/uso terapêutico , SARS-CoV-2 , Imunossupressores/uso terapêutico , COVID-19/prevenção & controle , Recidiva , Imunidade , VacinaçãoRESUMO
A major obstacle to vaccination against antigenically variable viruses is skewing of antibody responses to variable immunodominant epitopes. For influenza virus hemagglutinin (HA), the immunodominance of the variable head impairs responses to the highly conserved stem. Here, we show that head immunodominance depends on the physical attachment of head to stem. Stem immunogenicity is enhanced by immunizing with stem-only constructs or by increasing local HA concentration in the draining lymph node. Surprisingly, coimmunization of full-length HA and stem alters stem-antibody class switching. Our findings delineate strategies for overcoming immunodominance, with important implications for human vaccination.
Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Hemaglutininas/imunologia , Epitopos Imunodominantes/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Animais , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Células-Tronco/imunologiaRESUMO
Because of significant viral diversity, vaccines that elicit durable and broad protection against influenza have been elusive. Recent research has focused on the potential of highly conserved regions of the viral hemagglutinin (HA) as targets for broadly neutralizing Ab responses. Abs that bind the highly conserved stem or stalk of HA can be elicited by vaccination in humans and animal models and neutralize diverse influenza strains. However, the frequency and phenotype of HA stem-specific B cells in vivo remain unclear. In this article, we characterize HA stem-specific B cell responses following H5N1 vaccination and describe the re-expansion of a pre-existing population of memory B cells specific for stem epitopes. This population uses primarily, but not exclusively, IGHV1-69-based Igs for HA recognition. However, within some subjects, allelic polymorphism at the ighv1-69 locus can limit IGHV1-69 immunodominance and may reduce circulating frequencies of stem-reactive B cells in vivo. The accurate definition of allelic selection, recombination requirements, and ontogeny of neutralizing Ab responses to influenza will aid rational influenza vaccine design.
Assuntos
Anticorpos Antivirais/sangue , Linfócitos B/imunologia , Memória Imunológica , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Humana/prevenção & controle , Anticorpos de Cadeia Única/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/biossíntese , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Linfócitos B/citologia , Linfócitos B/virologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Loci Gênicos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Virus da Influenza A Subtipo H5N1/química , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Influenza Humana/sangue , Influenza Humana/imunologia , Influenza Humana/virologia , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Vacinação , Vacinas de DNA , Vacinas de Produtos InativadosRESUMO
The VH6-1 class of antibodies includes some of the broadest and most potent antibodies that neutralize influenza A virus. Here, we elicit and isolate anti-idiotype antibodies against germline versions of VH6-1 antibodies, use these to sort human leukocytes, and isolate a new VH6-1-class member, antibody L5A7, which potently neutralized diverse group 1 and group 2 influenza A strains. While its heavy chain derived from the canonical IGHV6-1 heavy chain gene used by the class, L5A7 utilized a light chain gene, IGKV1-9, which had not been previously observed in other VH6-1-class antibodies. The cryo-EM structure of L5A7 in complex with Indonesia 2005 hemagglutinin revealed a nearly identical binding mode to other VH6-1-class members. The structure of L5A7 bound to the isolating anti-idiotype antibody, 28H6E11, revealed a shared surface for binding anti-idiotype and hemagglutinin that included two critical L5A7 regions: an FG motif in the third heavy chain-complementary determining region (CDR H3) and the CDR L1 loop. Surprisingly, the chemistries of L5A7 interactions with hemagglutinin and with anti-idiotype were substantially different. Overall, we demonstrate anti-idiotype-based isolation of a broad and potent influenza A virus-neutralizing antibody, revealing that anti-idiotypic selection of antibodies can involve features other than chemical mimicry of the target antigen.
Assuntos
Anticorpos Anti-Idiotípicos , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A , Humanos , Vírus da Influenza A/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Anti-Idiotípicos/isolamento & purificação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Animais , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/químicaRESUMO
Durable humoral immunity is mediated by long-lived plasma cells (LLPCs) that reside in the bone marrow. It remains unclear whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein vaccination is able to elicit and maintain LLPCs. Here, we describe a sensitive method to identify and isolate antigen-specific LLPCs by tethering antibodies secreted by these cells onto the cell surface. Using this method, we found that two doses of adjuvanted SARS-CoV-2 spike protein vaccination are able to induce spike protein-specific LLPC reservoirs enriched for receptor binding domain specificities in the bone marrow of nonhuman primates that are detectable for several months after vaccination. Immunoglobulin gene sequencing confirmed that several of these LLPCs were clones of memory B cells elicited 2 weeks after boost that had undergone further somatic hypermutation. Many of the antibodies secreted by these LLPCs also exhibited improved neutralization and cross-reactivity compared with earlier time points. These findings establish our method as a means to sensitively and reliably detect rare antigen-specific LLPCs and demonstrate that adjuvanted SARS-CoV-2 spike protein vaccination establishes spike protein-specific LLPC reservoirs.
Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Plasmócitos/metabolismo , Anticorpos Antivirais , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Adjuvantes Imunológicos , Primatas , Anticorpos NeutralizantesRESUMO
The lymph node (LN) is a critical biological site for immune maturation after vaccination as it includes several cell populations critical for priming the antibody response. Here, we present a protocol for sampling the LN and isolating cell populations to evaluate immunogens targeting germline cells. We describe steps for media and tube preparation and sample collection using an ultrasound-guided LN fine-needle aspiration procedure. This protocol is safe, quick, low-cost, and less invasive than excisional biopsy. For complete details on the use and execution of this protocol, please refer to Leggat et al. (2022).1.
Assuntos
Centro Germinativo , Linfonodos , Humanos , Biópsia por Agulha Fina , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Vacinação , Ultrassonografia de IntervençãoRESUMO
Protocols for efficient capture of antigen-specific B cells (ASBCs) are useful for understanding pathogen-specific B-cell responses during natural infection or vaccination. Fluorescently labeled tetramerized probes are classically used to capture ASBCs, but many occlude valuable epitopes available for B-cell receptor binding. Here, we describe a bead assay to confirm ASBC receptor accessibility on probes and a sequential staining process to capture HIV gp140-specific B cells from human peripheral blood mononuclear cells. For complete details on the use and execution of this protocol, please refer to Townsley et al. (2021).
Assuntos
Linfócitos B/imunologia , Citometria de Fluxo/métodos , Coloração e Rotulagem/métodos , Produtos do Gene env do Vírus da Imunodeficiência Humana , Humanos , Leucócitos Mononucleares/imunologia , Sondas Moleculares , Receptores de Antígenos de Linfócitos B/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/químicaRESUMO
Human immunodeficiency virus (HIV) remains a significant public health issue. In recent years, passive immunization with broadly neutralizing antibodies (bNabs) is being considered as a potentially efficacious approach for fighting HIV. One candidate that holds great promise is represented by the CD4-binding site targeted bNab capable of neutralizing over 90% of circulating HIV strains, VRC01. VRC01 along with its variants and clonal relatives - VRC01-LS and VRC07-523LS are currently being evaluated as vaccines in a number of clinical trials for HIV treatment and prevention. While mucosal areas of the body serve as major ports of HIV entry, reliable quantification of bNabs for pharmacokinetic and bioavailability analyses has been challenging due to low antibody concentrations in these samples. We developed an immunoassay on the Singulex platform which enables ultra-sensitive quantification of VRC01, VRC07, VRC01-LS and VRC07-523LS with a greater than 4-log linear dynamic range (LDR) and less than 120 pg/mL lower limit of quantitation (LLOQ). We implemented this assay to quantify VRC01 levels in rectal, cervical and oral mucosal samples in two passive immunization studies conducted with VRC01 - VRC 601 and VRC 602. Our assay was able to successfully quantify VRC01 levels in mucosal samples from all dosage groups (5 - -40 mg/kg) in these trials. VRC01 levels in a significant proportion of these samples (37% in oral and 25% in rectal mucosa) were below the lower limits of quantitation of other traditional immunoassays used for VRC01 quantification. We also measured VRC01 levels in sera from these trials and found that VRC01 measurements made using our assay exhibited excellent correlation (r2 = 0.9509) with measurements made previously using Enzyme-linked immunosorbent assay (ELISA). Our assay provides a reliable, sensitive and accurate method for quantification of clinically relevant bNabs and will help delineate antibody infiltration and bioavailability characteristics in complex biological matrices (CBM) such as mucosal tissues. This will in turn help determine clinical antibody threshold concentrations required to mediate protection against HIV acquisition and serve to inform dosing regimens and clinical trial design for future efficacy trials with these bNabs.
Assuntos
Anticorpos Anti-HIV/análise , HIV-1/imunologia , Mucosa/virologia , Anticorpos Amplamente Neutralizantes/análise , Colo do Útero/virologia , Feminino , Humanos , Imunoensaio , Mucosa Intestinal/virologia , Limite de Detecção , Mucosa Bucal/virologiaRESUMO
The RV144 HIV-1 vaccine trial has been the only clinical trial to date that has shown any degree of efficacy and associated with the presence of vaccine-elicited HIV-1 envelope-specific binding antibody and CD4+ T-cell responses. This trial also showed that a vector-prime protein boost combined vaccine strategy was better than when used alone. Here we have studied three different priming vectors-plasmid DNA, recombinant MVA, and recombinant VSV, all encoding clade C transmitted/founder Env 1086 C gp140, for priming three groups of six non-human primates each, followed by a protein boost with adjuvanted 1086 C gp120 protein. Our data showed that MVA-priming favors the development of higher antibody binding titers and neutralizing activity compared with other vectors. Analyses of the draining lymph nodes revealed that MVA-prime induced increased germinal center reactivity characterized by higher frequencies of germinal center (PNAhi) B cells, higher frequencies of antigen-specific B-cell responses as well as an increased frequency of the highly differentiated (ICOShiCD150lo) Tfh-cell subset.
RESUMO
BackgroundVRC01, a potent, broadly neutralizing monoclonal antibody, inhibits simian-HIV infection in animal models. The HVTN 104 study assessed the safety and pharmacokinetics of VRC01 in humans. We extend the clinical evaluation to determine intravenously infused VRC01 distribution and protective function at mucosal sites of HIV-1 entry.MethodsHealthy, HIV-1-uninfected men (n = 7) and women (n = 5) receiving VRC01 every 2 months provided mucosal and serum samples once, 4-13 days after infusion. Eleven male and 8 female HIV-seronegative volunteers provided untreated control samples. VRC01 levels were measured in serum, secretions, and tissue, and HIV-1 inhibition was determined in tissue explants.ResultsMedian VRC01 levels were quantifiable in serum (96.2 µg/mL or 1.3 pg/ng protein), rectal tissue (0.11 pg/ng protein), rectal secretions (0.13 pg/ng protein), vaginal tissue (0.1 pg/ng protein), and cervical secretions (0.44 pg/ng protein) from all recipients. VRC01/IgG ratios in male serum correlated with those in paired rectal tissue (r = 0.893, P = 0.012) and rectal secretions (r = 0.9643, P = 0.003). Ex vivo HIV-1Bal26 challenge infected 4 of 21 rectal explants from VRC01 recipients versus 20 of 22 from controls (P = 0.005); HIV-1Du422.1 infected 20 of 21 rectal explants from VRC01 recipients and 12 of 12 from controls (P = 0.639). HIV-1Bal26 infected 0 of 14 vaginal explants of VRC01 recipients compared with 23 of 28 control explants (P = 0.003).ConclusionIntravenous VRC01 distributes into the female genital and male rectal mucosa and retains anti-HIV-1 functionality, inhibiting a highly neutralization-sensitive but not a highly resistant HIV-1 strain in mucosal tissue. These findings lend insight into VRC01 mucosal infiltration and provide perspective on in vivo protective efficacy.FundingNational Institute of Allergy and Infectious Diseases and Bill & Melinda Gates Foundation.
Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Amplamente Neutralizantes/administração & dosagem , Anticorpos Anti-HIV/administração & dosagem , Infecções por HIV/prevenção & controle , HIV-1/imunologia , HIV-1/patogenicidade , Reto/imunologia , Vagina/imunologia , Adulto , Anticorpos Monoclonais/farmacocinética , Feminino , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Técnicas In Vitro , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Mucosa/imunologia , Mucosa/virologia , Reto/virologia , Vagina/virologia , Adulto JovemRESUMO
The development of a protective vaccine remains a top priority for the control of the HIV/AIDS pandemic. Here, we show that a messenger RNA (mRNA) vaccine co-expressing membrane-anchored HIV-1 envelope (Env) and simian immunodeficiency virus (SIV) Gag proteins to generate virus-like particles (VLPs) induces antibodies capable of broad neutralization and reduces the risk of infection in rhesus macaques. In mice, immunization with co-formulated env and gag mRNAs was superior to env mRNA alone in inducing neutralizing antibodies. Macaques were primed with a transmitted-founder clade-B env mRNA lacking the N276 glycan, followed by multiple booster immunizations with glycan-repaired autologous and subsequently bivalent heterologous envs (clades A and C). This regimen was highly immunogenic and elicited neutralizing antibodies against the most prevalent (tier-2) HIV-1 strains accompanied by robust anti-Env CD4+ T cell responses. Vaccinated animals had a 79% per-exposure risk reduction upon repeated low-dose mucosal challenges with heterologous tier-2 simian-human immunodeficiency virus (SHIV AD8). Thus, the multiclade env-gag VLP mRNA platform represents a promising approach for the development of an HIV-1 vaccine.
Assuntos
Anticorpos Neutralizantes/imunologia , Genes env , Genes gag , Anticorpos Anti-HIV/biossíntese , HIV-1/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia , Animais , Anticorpos Anti-HIV/imunologia , Imunização Secundária , Macaca mulatta , Fatores de Risco , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas de mRNA/administração & dosagemRESUMO
BACKGROUND: Neutralizing antibodies develop in natural HIV-1 infection. Their development often takes several years and may rely on chronic virus exposure. At the same time recent studies show that treatment early in infection may provide opportunities for immune preservation. However, it is unknown how intermittent treatment in early infection affects development of the humoral immune response over time. We investigate the effect of cART in early HIV infection on the properties of the memory B cell compartment following 6 months of cART or in the absence of treatment. The patients included participated in the Primo-SHM trial where patients with an early HIV-1 infection were randomized to no treatment or treatment for 24 or 60 weeks. METHODS: Primo-SHM trial patients selected for the present study were untreated (n = 23) or treated for 24 weeks (n = 24). Here we investigate memory B cell properties at viral set-point and at a late time point (respectively median 54 and 73 weeks) before (re)-initiation of treatment. RESULTS: At viral set-point, the memory B cell compartment in treated patients demonstrated significantly lower fractions of antigen-primed, activated, memory B cells (p = 0.006). In contrast to untreated patients, in treated patients the humoral HIV-specific response reached a set point over time. At a transcriptional level, sets of genes that showed enhanced expression in memory B cells at viral setpoint in untreated patients, conversely showed rapid increase of expression of the same genes in treated patients at the late time point. CONCLUSION: These data suggest that, although the memory B cell compartment is phenotypically preserved until viral setpoint after treatment interruption, the development of the HIV-specific antibody response may benefit from exposure to HIV. The effect of viral exposure on B cell properties is also reflected by longitudinal changes in transcriptional profile in memory B cells over time in early treated patients.
Assuntos
Linfócitos B/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Adulto , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Memória Imunológica , Pessoa de Meia-Idade , Transcrição GênicaRESUMO
Antigenic drift and shift of influenza strains underscore the need for broadly protective influenza vaccines. One strategy is to design immunogens that elicit B cell responses against conserved epitopes on the hemagglutinin (HA) stem. To better understand the elicitation of HA stem-targeted B cells to group 1 and group 2 influenza subtypes, we compared the memory B cell response to group 2 H7N9 and group 1 H5N1 vaccines in humans. Upon H7N9 vaccination, almost half of the HA stem-specific response recognized the group 1 and group 2 subtypes, whereas the response to H5N1 was largely group 1-specific. Immunoglobulin repertoire analysis of HA-specific B cells indicated that the H7N9 and H5N1 vaccines induced genetically similar cross-group HA stem-binding B cells, albeit at a much higher frequency upon H7N9 vaccination. These data suggest that a group 2-based stem immunogen could prove more effective than a group 1 immunogen at eliciting broad cross-group protection in humans.
RESUMO
Pseudomonas sp. strain YS-1p and Rhizobium sp. strain YS-1r were isolated from a lignin-degrading enrichment culture. The isolates degraded lignin-derived monomers, dimers, alkali lignin, and, to a smaller extent (3% to 5%), lignin in switch grass and alfalfa. Genome analysis revealed the presence of a variety of lignin-degrading genes.