Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Blood ; 143(25): 2612-2626, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38551812

RESUMO

ABSTRACT: Immunogenic cell death (ICD) is a form of cell death by which cancer treatments can induce a clinically relevant antitumor immune response in a broad range of cancers. In multiple myeloma (MM), the proteasome inhibitor bortezomib is an ICD inducer and creates durable therapeutic responses in patients. However, eventual relapse and resistance to bortezomib appear inevitable. Here, by integrating patient transcriptomic data with an analysis of calreticulin (CRT) protein interactors, we found that GABA type A receptor-associated protein (GABARAP) is a key player whose loss prevented tumor cell death from being perceived as immunogenic after bortezomib treatment. GABARAP is located on chromosome 17p, which is commonly deleted in patients with high risk MM. GABARAP deletion impaired the exposure of the eat-me signal CRT on the surface of dying MM cells in vitro and in vivo, thus reducing tumor cell phagocytosis by dendritic cells and the subsequent antitumor T-cell response. Low GABARAP was independently associated with shorter survival in patients with MM and reduced tumor immune infiltration. Mechanistically, we found that GABARAP deletion blocked ICD signaling by decreasing autophagy and altering Golgi apparatus morphology, with consequent defects in the downstream vesicular transport of CRT. Conversely, upregulating autophagy using rapamycin restored Golgi morphology, CRT exposure, and ICD signaling in GABARAPKO cells undergoing bortezomib treatment. Therefore, coupling an ICD inducer, such as bortezomib, with an autophagy inducer, such as rapamycin, may improve patient outcomes in MM, in which low GABARAP in the form of del(17p) is common and leads to worse outcomes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Resistencia a Medicamentos Antineoplásicos , Proteínas Associadas aos Microtúbulos , Mieloma Múltiplo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/genética , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Calreticulina/metabolismo , Calreticulina/genética , Morte Celular Imunogênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Autofagia/efeitos dos fármacos
2.
Blood ; 129(16): 2233-2245, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28096095

RESUMO

Dysregulated oncogenic serine/threonine kinases play a pathological role in diverse forms of malignancies, including multiple myeloma (MM), and thus represent potential therapeutic targets. Here, we evaluated the biological and functional role of p21-activated kinase 4 (PAK4) and its potential as a new target in MM for clinical applications. PAK4 promoted MM cell growth and survival via activation of MM survival signaling pathways, including the MEK-extracellular signal-regulated kinase pathway. Furthermore, treatment with orally bioavailable PAK4 allosteric modulator (KPT-9274) significantly impacted MM cell growth and survival in a large panel of MM cell lines and primary MM cells alone and in the presence of bone marrow microenvironment. Intriguingly, we have identified FGFR3 as a novel binding partner of PAK4 and observed significant activity of KPT-9274 against t(4;14)-positive MM cells. This set of data supports PAK4 as an oncogene in myeloma and provide the rationale for the clinical evaluation of PAK4 modulator in myeloma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Quinases Ativadas por p21/genética , Regulação Alostérica , Animais , Apoptose/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/enzimologia , Células da Medula Óssea/patologia , Caspases/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromossomos Humanos Par 14 , Cromossomos Humanos Par 4 , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/enzimologia , Leucócitos Mononucleares/patologia , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/patologia , Cultura Primária de Células , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Translocação Genética , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/metabolismo
3.
Cancer Immunol Immunother ; 65(1): 13-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26559812

RESUMO

While inflammation has been associated with the development and progression of colorectal cancer, the exact role of the inflammatory Th17 pathway remains unclear. In this study, we aimed to determine the relative importance of IL-17A and the master regulator of the Th17 pathway, the transcription factor RORγt, in the sporadic intestinal neoplasia of APC(MIN/+) mice and in human colorectal cancer. We show that levels of IL-17A are increased in human colon cancer as compared to adjacent uninvolved colon. Similarly, naïve helper T cells from colorectal cancer patients are more inducible into the Th17 pathway. Furthermore, IL-17A, IL-21, IL-22, and IL-23 are all demonstrated to be directly mitogenic to human colorectal cancer cell lines. Nevertheless, deficiency of IL-17A but not RORγt is associated with decreased spontaneous intestinal tumorigenesis in the APC(MIN/+) mouse model, despite the fact that helper T cells from RORγt-deficient APC(MIN/+) mice do not secrete IL-17A when subjected to Th17-polarizing conditions and that Il17a expression is decreased in the intestine of RORγt-deficient APC(MIN/+) mice. Differential expression of Th17-associated cytokines between IL-17A-deficient and RORγt-deficient APC(MIN/+) mice may explain the difference in adenoma development.


Assuntos
Interleucina-17/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Carcinogênese , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Feminino , Humanos , Masculino , Camundongos
4.
Br J Haematol ; 169(1): 36-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25572917

RESUMO

Once-weekly administration of bortezomib has reduced bortezomib-induced peripheral neuropathy without affecting response rates, but this has only been demonstrated prospectively in three- and four- drug combinations. We report a phase II trial of alternate dosing and schedule of bortezomib and dexamethasone in newly diagnosed multiple myeloma patients who are not eligible for or refused autologous stem cell transplantation. Bortezomib 1·6 mg/m(2) intravenously was given once-weekly for six cycles, together with dexamethasone 40 mg on the day of and day after bortezomib. Fifty patients were enrolled; 58% did not require any dose modification. The majority of patients had multiple co-morbidities, including cardiovascular (76%) and renal insufficiency (54%), and the median number of medications prior to enrollment was 13. Of all evaluable patients, the overall response rate was 79% and at least 45% had at least a very good partial response. The median time to first response was 1·3 months (range, 0·25-2·4 months). The progression-free and overall survivals were 8 months and 46·5 months, respectively. Twenty-four percent developed worsening neuropathy. We conclude that alternate dosing and scheduling of bortezomib and dexamethasone is both safe and effective for management of newly diagnosed multiple myeloma in frail patients. (ClinicalTrials.gov number, NCT01090921).


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Mieloma Múltiplo , Veteranos , Idoso , Idoso de 80 Anos ou mais , Autoenxertos , Ácidos Borônicos/administração & dosagem , Bortezomib , Dexametasona , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/mortalidade , Pirazinas/administração & dosagem , Transplante de Células-Tronco , Taxa de Sobrevida
5.
J Immunol ; 190(3): 1360-71, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23293352

RESUMO

The 90-kDa heat shock protein (Hsp90) has become an important therapeutic target with ongoing evaluation in a number of malignancies. Although Hsp90 inhibitors have a high therapeutic index with limited effects on normal cells, they have been described to inhibit dendritic cell function. However, its effect on human immune effector cells may have significant clinical implications, but remains unexplored. In this study, we have evaluated the effects of Hsp90 inhibition on human T lymphocyte and NK cells, including their Ag expression, activation, proliferation, and functional activities. These studies demonstrate that Hsp90 inhibition irreversibly downregulates cell surface expression of critical Ags (CD3, CD4, CD8), the costimulatory molecule (CD28, CD40L), and αß receptors on T lymphocytes, as well as activating receptors (CD2, CD11a, CD94, NKp30, NKp44, NKp46, KARp50.3) on NK cells. Hsp90 inhibition significantly reduced CD4 protein expression on T lymphocytes at both the cell surface and intracellular level, which was shown to be associated with aberrant regulation of Src-kinase p56(Lck). Downregulation of the Ags triggered by Hsp90 inhibition on CD3(+) T lymphocytes, both in CD4(+) and CD8(+) T cell subsets, was associated with a disruption in their cellular activation, proliferation, and/or IFN-γ production, when the inhibition occurred either in activated or inactivated cells. In addition, downregulation of key activating receptors on NK cells following Hsp90 inhibition resulted in decreased cytotoxicity against tumor cells. Therefore, these observations demonstrate the need to closely monitor immune function in patients being treated with a Hsp90 inhibitor and may provide a potential therapeutic application in autoimmune diseases.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Antígenos CD/biossíntese , Antígenos CD/genética , Apoptose/efeitos dos fármacos , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Citocinas/farmacologia , Citotoxicidade Imunológica , Células Dendríticas/imunologia , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Interferon gama/biossíntese , Interferon gama/genética , Células Matadoras Naturais/efeitos dos fármacos , Lactamas Macrocíclicas/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/fisiologia , Mieloma Múltiplo/patologia , Fenótipo , RNA Mensageiro/biossíntese , Receptores de Antígenos de Linfócitos T alfa-beta/biossíntese , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Células Matadoras Naturais/biossíntese , Receptores de Células Matadoras Naturais/genética , Proteínas Recombinantes/farmacologia , Linfócitos T/efeitos dos fármacos
6.
Blood ; 119(13): 3142-50, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-22267603

RESUMO

Targets of curative donor-derived graft-versus-myeloma (GVM) responses after allogeneic hematopoietic stem cell transplantation (HSCT) remain poorly defined, partly because immunity against minor histocompatibility Ags (mHAgs) complicates the elucidation of multiple myeloma (MM)-specific targets. We hypothesized that syngeneic HSCT would facilitate the identification of GVM-associated Ags because donor immune responses in this setting should exclusively target unique tumor Ags in the absence of donor-host genetic disparities. Therefore, in the present study, we investigated the development of tumor immunity in an HLA-A0201(+) MM patient who achieved durable remission after myeloablative syngeneic HSCT. Using high-density protein microarrays to screen post-HSCT plasma, we identified 6 Ags that elicited high-titer (1:5000-1:10 000) Abs that correlated with clinical tumor regression. Two Ags (DAPK2 and PIM1) had enriched expression in primary MM tissues. Both elicited Ab responses in other MM patients after chemotherapy or HSCT (11 and 6 of 32 patients for DAPK2 and PIM1, respectively). The index patient also developed specific CD8(+) T-cell responses to HLA-A2-restricted peptides derived from DAPK2 and PIM1. Peptide-specific T cells recognized HLA-A2(+) MM-derived cell lines and primary MM tumor cells. Coordinated T- and B-cell immunity develops against MM-associated Ags after syngeneic HSCT. DAPK1 and PIM1 are promising target Ags for MM-directed immunotherapy.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Antígenos Específicos de Melanoma/imunologia , Antígenos Específicos de Melanoma/isolamento & purificação , Mieloma Múltiplo/terapia , Estudos de Casos e Controles , Células Cultivadas , Feminino , Seguimentos , Ensaios de Triagem em Larga Escala , Humanos , Células K562 , Antígenos Específicos de Melanoma/sangue , Antígenos Específicos de Melanoma/metabolismo , Pessoa de Meia-Idade , Mieloma Múltiplo/sangue , Mieloma Múltiplo/imunologia , Análise Serial de Proteínas , Indução de Remissão , Fatores de Tempo , Transplante Isogênico , Gêmeos , Estudos de Validação como Assunto
7.
Blood Adv ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861273

RESUMO

Venetoclax is the first example of personalized medicine for multiple myeloma (MM), with meaningful clinical activity as a monotherapy and in combination in myeloma patients harboring the t(11:14) translocation. However, despite the high response rates and prolonged PFS, a significant proportion of patients eventually relapse. Here, we aimed to study adaptive molecular responses after the acquisition of venetoclax resistance in sensitive t(11:14) MM cell models. We therefore generated single-cell venetoclax-resistant t(11:14) MM cell lines and investigated the mechanisms contributing to resistance as well as the cells' sensitivity to other treatments. Our data suggests that acquired resistance to venetoclax is characterized by reduced mitochondrial priming and changes in BCL-2 family proteins' expression in MM cells, conferring broad resistance to standard-of-care anti-myeloma drugs. However, our results show that the resistant cells are still sensitive to immunotherapeutic treatments, highlighting the need to consider appropriate sequencing of these treatments following venetoclax-based regimens.

8.
Blood Adv ; 7(1): 9-19, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35882498

RESUMO

Multiple myeloma (MM) is characterized by an immunosuppressive microenvironment that enables tumor development. One of the mechanisms of immune evasion used by MM cells is the inhibition of natural killer (NK) cell effector functions; thus, the restoration of NK cell antitumor activity represents a key goal to increase tumor cell recognition, avoid tumor escape and potentially enhancing the effect of other drugs. In this study, we evaluated the ability of the investigational medicine NKTR-255, an IL-15 receptor agonist, to engage the IL-15 pathway and stimulate NK cells against MM cells. We observed that incubation with NKTR-255 was able to tilt the balance toward an activated phenotype in NK cells isolated from peripheral blood mononuclear cells of patients with MM, with increased expression of activating receptors on the surface of treated NK cells. This resulted in an enhanced degranulation, cytokine release, and anti-tumor cytotoxicity when the NK cells were exposed to both MM cell lines and primary MM cells. We further evaluated the in vivo effect of NKTR-255 in fully humanized immunocompetent mice subcutaneously engrafted with H929 MM cells. Compared with placebo, weekly injection of the mice with NKTR-255 increased the number of circulating NK cells in peripheral blood and delayed tumor growth. Finally, we observed that combination of NKTR-255 with the anti-CD38 antibody, daratumumab, was effective against MM cells in vitro and in vivo. Taken together, our data suggest a significant impact of NKTR-255 in inducing NK cell function against MM cells with important translational implications.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Animais , Camundongos , Interleucina-15/metabolismo , Mieloma Múltiplo/terapia , Polímeros/metabolismo , Polímeros/farmacologia , Polímeros/uso terapêutico , Leucócitos Mononucleares , Linhagem Celular Tumoral , Fatores Imunológicos/uso terapêutico , Antineoplásicos/uso terapêutico , Células Matadoras Naturais , Microambiente Tumoral
9.
Front Oncol ; 13: 1271807, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111533

RESUMO

Background: Multiple Myeloma (MM) patients exhibit dysregulated immune system, which is further weakened by chemotherapeutic agents. While cereblon-modulating agents, such as pomalidomide and lenalidomide, have been found to improve the immune profile, the efficacy of their impact in combination with other treatments is yet unknown. Methods: We conducted an immune-profiling of a longitudinal cohort of 366 peripheral blood samples from the CC4047-MM-007 (OPTIMISMM, NCT01734928) study. This study followed relapsed/refractory Multiple Myeloma (RRMM) patients who were treated with Velcade + dexamethasone (Vd), or Vd with pomalidomide (PVd). 366 blood samples from 186 patients were evaluated using multi-color flow cytometry at 3 timepoints: screening, day 8 of cycle 1, and cycle 3. Results: Among NK and NKT cell populations, adding pomalidomide showed no inhibition in the frequency of NK cells. When expression of double positivity for activation markers like, p46/NKG2D, on NK cells was higher than the median, PVd treated patients showed significantly better (p=0.05) progression-free survival (PFS) (additional 15 months) than patients with lower than the median expression of p46/NKG2D on NK cells. PVd treated patients who expressed CD158a/b below the median at cycle 1 demonstrated a significantly better PFS (more than 18months). Among B cell subtypes, PVd treatment significantly increased the abundance of B1b cells (p<0.05) and decreased Bregs (p<0.05) at day 8 of both cycle 1 and cycle 3 when compared to screening samples. Of all the B cell-markers evaluated among paired samples, a higher expression of MZB cells at day 8 of cycle 1 has resulted in enhanced PFS in PVd treated patients. Within T cells, pomalidomide treatment did not decrease the frequency of CD8 T cells when compared with screening samples. The higher the surface expression of OX-40 on CD8 T cells and the lower the expression of PD-1 and CD25 on CD4 T cells by PVd treatment resulted in improved PFS. Conclusion: The prognostic significance for the number of immune markers is only seen in the PVd arm and none of these immune markers exhibit prognostic values in the Vd arm. This study demonstrates the importance of the immunomodulatory effects and the therapeutic benefit of adding pomalidomide to Vd treatment.

10.
Blood ; 115(14): 2827-34, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19965618

RESUMO

Multiple myeloma (MM) is a plasma cell neoplasm that proceeds through a premalignant state of monoclonal gammopathy of unknown significance; however, the molecular events responsible for myelomagenesis remain uncharacterized. To identify cellular pathways deregulated in MM, we addressed that sumoylation is homologous to ubiquitination and results in the attachment of the ubiquitin-like protein Sumo onto target proteins. Sumoylation was markedly enhanced in MM patient lysates compared with normal plasma cells and expression profiling indicated a relative induction of sumoylation pathway genes. The Sumo-conjugating enzyme Ube2I, the Sumo-ligase PIAS1, and the Sumo-inducer ARF were elevated in MM patient samples and cell lines. Survival correlated with expression because 80% of patients with low UBE2I and PIAS1 were living 6 years after transplantation, whereas only 45% of patients with high expression survived 6 years. UBE2I encodes the sole Sumo-conjugating enzyme in mammalian cells and cells transfected with a dominant-negative sumoylation-deficient UBE2I mutant exhibited decreased survival after radiation exposure, impaired adhesion to bone marrow stroma cell and decreased bone marrow stroma cell-induced proliferation. UBE2I confers cells with multiple advantages to promote tumorigenesis and predicts decreased survival when combined with PIAS1. The sumoylation pathway is a novel therapeutic target with implications for existing proteasomal-based treatment strategies.


Assuntos
Mieloma Múltiplo/metabolismo , Plasmócitos/metabolismo , Processamento de Proteína Pós-Traducional , Proteína SUMO-1/metabolismo , Células da Medula Óssea/metabolismo , Adesão Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Mieloma Múltiplo/genética , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/terapia , Mutação , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Inibidoras de STAT Ativados/biossíntese , Proteína SUMO-1/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/biossíntese , Transplante de Células-Tronco , Células Estromais/metabolismo , Transplante Homólogo , Enzimas de Conjugação de Ubiquitina/biossíntese
11.
Blood ; 115(26): 5385-92, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20395418

RESUMO

Elevated cytokines in bone marrow (BM) micro-environment (interleukin-6 [IL-6], transforming growth factor-beta [TGF-beta], and IL-1beta) may play an important role in observed immune dysfunction in multiple myeloma (MM). As IL-6 and TGF-beta are important for the generation of T-helper 17 (T(H)17) cells, we evaluated and observed a significantly elevated baseline and induced frequency of T(h)17 cells in peripheral blood mononuclear cells (PBMCs) and BM mononuclear cells (BMMCs) from MM patients compared with healthy donors. We observed significant increase in levels of serum IL-17, IL-21, IL-22, and IL-23 in blood and BM in MM compared with healthy donors. We also observed that myeloma PBMCs after T(H)17 polarization significantly induced IL-1alpha, IL-13, IL-17, and IL-23 production compared with healthy donor PBMCs. We next observed that IL-17 promotes myeloma cell growth and colony formation via IL-17 receptor, adhesion to bone marrow stromal cells (BMSCs) as well as increased growth in vivo in murine xenograft model of human MM. Additionally, we have observed that combination of IL-17 and IL-22 significantly inhibited the production of T(H)1-mediated cytokines, including interferon-gamma (IFN-gamma), by healthy donor PBMCs. In conclusion, IL-17-producing T(h)17 cells play an important role in MM pathobiology and may be an important therapeutic target for anti-MM activity and to improve immune function.


Assuntos
Proliferação de Células , Interleucina-17/imunologia , Mieloma Múltiplo/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Citocinas/imunologia , Regulação Neoplásica da Expressão Gênica , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Masculino , Camundongos , Camundongos SCID , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Células Th1/citologia , Células Th1/imunologia
12.
Leukemia ; 36(1): 138-154, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34290359

RESUMO

Immune profiling in patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), and multiple myeloma (MM) provides the framework for developing novel immunotherapeutic strategies. Here, we demonstrate decreased CD4+ Th cells, increased Treg and G-type MDSC, and upregulation of immune checkpoints on effector/regulatory and CD138+ cells in MM patients, compared MGUS/SMM patients or healthy individuals. Among the checkpoints profiled, LAG3 was most highly expressed on proliferating CD4+ Th and CD8+ Tc cells in MM patients BMMC and PBMC. Treatment with antibody targeting LAG3 significantly enhanced T cells proliferation and activities against MM. XBP1/CD138/CS1-specific CTL generated in vitro displayed anti-MM activity, which was further enhanced following anti-LAG3 treatment, within the antigen-specific memory T cells. Treg and G-type MDSC weakly express LAG3 and were minimally impacted by anti-LAG3. CD138+ MM cells express GAL-3, a ligand for LAG3, and anti-GAL-3 treatment increased MM-specific responses, as observed for anti-LAG3. Finally, we demonstrate checkpoint inhibitor treatment evokes non-targeted checkpoints as a cause of resistance and propose combination therapeutic strategies to overcome this resistance. These studies identify and validate blockade of LAG3/GAL-3, alone or in combination with immune strategies including XBP1/CD138/CS1 multipeptide vaccination, to enhance anti-tumor responses and improve patient outcome in MM.


Assuntos
Antígenos CD/química , Proteínas Sanguíneas/antagonistas & inibidores , Galectinas/antagonistas & inibidores , Terapia de Imunossupressão/métodos , Leucócitos Mononucleares/imunologia , Gamopatia Monoclonal de Significância Indeterminada/imunologia , Mieloma Múltiplo/imunologia , Linfócitos T Citotóxicos/imunologia , Apoptose , Estudos de Casos e Controles , Proliferação de Células , Seguimentos , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Ativação Linfocitária , Gamopatia Monoclonal de Significância Indeterminada/metabolismo , Gamopatia Monoclonal de Significância Indeterminada/patologia , Gamopatia Monoclonal de Significância Indeterminada/terapia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Mieloma Múltiplo/terapia , Prognóstico , Células Tumorais Cultivadas , Proteína do Gene 3 de Ativação de Linfócitos
13.
Clin Cancer Res ; 28(21): 4820-4831, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35921526

RESUMO

PURPOSE: Immune checkpoint inhibitors (ICI) in general have shown poor efficacy in bladder cancer. The purpose of this project was to determine whether photodynamic therapy (PDT) with bladder cancer-specific porphyrin-based PLZ4-nanoparticles (PNP) potentiated ICI. EXPERIMENTAL DESIGN: SV40 T/Ras double-transgenic mice bearing spontaneous bladder cancer and C57BL/6 mice carrying syngeneic bladder cancer models were used to determine the efficacy and conduct molecular correlative studies. RESULTS: PDT with PNP generated reactive oxygen species, and induced protein carbonylation and dendritic cell maturation. In SV40 T/Ras double-transgenic mice carrying spontaneous bladder cancer, the median survival was 33.7 days in the control, compared with 44.8 (P = 0.0123), 52.6 (P = 0.0054), and over 75 (P = 0.0001) days in the anti-programmed cell death-1 antibody (anti-PD-1), PNP PDT, and combination groups, respectively. At Day 75 when all mice in other groups died, only 1 in 7 mice in the combination group died. For the direct anti-tumor activity, compared with the control, the anti-PD-1, PNP PDT, and combination groups induced a 40.25% (P = 0.0003), 80.72% (P < 0.0001), and 93.03% (P < 0.0001) tumor reduction, respectively. For the abscopal anticancer immunity, the anti-PD-1, PNP PDT, and combination groups induced tumor reduction of 45.73% (P = 0.0001), 54.92% (P < 0.0001), and 75.96% (P < 0.0001), respectively. The combination treatment also diminished spontaneous and induced lung metastasis. Potential of immunotherapy by PNP PDT is multifactorial. CONCLUSIONS: In addition to its potential for photodynamic diagnosis and therapy, PNP PDT can synergize immunotherapy in treating locally advanced and metastatic bladder cancer. Clinical trials are warranted to determine the efficacy and toxicity of this combination.


Assuntos
Fotoquimioterapia , Neoplasias da Bexiga Urinária , Camundongos , Animais , Neoplasias da Bexiga Urinária/terapia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Imunoterapia , Fototerapia , Fatores Imunológicos , Camundongos Transgênicos
14.
Lancet Haematol ; 9(2): e143-e161, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35114152

RESUMO

Infection remains the leading cause of morbidity and mortality in patients with multiple myeloma because of the cumulative effect of disease, treatment, and host-related factors. Given that infectious risk is cumulative through the course of the disease, preventing infections is paramount. Optimal preventive strategies include vaccination against common pathogens, antimicrobial prophylaxis, infection control measures, and immunoglobulin replacement in a small subset of patients; however, there are no universally accepted guidelines for infection prevention. This Review provides a consensus statement from a panel of 36 experts with global representation, which was convened by The International Myeloma Society to review existing literature and current guidelines, address issues associated with the risk of infection and prevention of infectious complications in multiple myeloma in the context of emerging therapies, and offer recommendations for preventing these complications.


Assuntos
Infecções , Mieloma Múltiplo , Consenso , Humanos , Infecções/complicações , Mieloma Múltiplo/complicações , Mieloma Múltiplo/tratamento farmacológico
15.
Blood ; 114(15): 3276-84, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19587378

RESUMO

The transformation from monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM) is thought to be associated with changes in immune processes. We have therefore used serologic analysis of recombinant cDNA expression library to screen the sera of MGUS patients to identify tumor-associated antigens. A total of 10 antigens were identified, with specific antibody responses in MGUS. Responses appeared to be directed against intracellular proteins involved in cellular functions, such as apoptosis (SON, IFT57/HIPPI), DNA and RNA binding (ZNF292, GPATCH4), signal transduction regulators (AKAP11), transcriptional corepressor (IRF2BP2), developmental proteins (OFD1), and proteins of the ubiquitin-proteasome pathway (PSMC1). Importantly, the gene responsible for the oral-facial-digital type I syndrome (OFD1) had response in 6 of 29 (20.6%) MGUS patients but 0 of 11 newly diagnosed MM patients. Interestingly, 3 of 11 (27.2%) MM patients after autologous stem cell transplantations showed responses to OFD1. We have confirmed T-cell responses against OFD1 in MGUS and observed down-regulation of GLI1/PTCH1 and p-beta-catenin after OFD1 knock-down with specific siRNA, suggesting its functional role in the regulation of Hh and Wnt pathways. These findings demonstrate OFD1 as an important immune target and highlight its possible role in signal transduction and tumorigenesis in MGUS and MM.


Assuntos
Autoantígenos/imunologia , Mieloma Múltiplo/imunologia , Paraproteinemias/imunologia , Proteínas/imunologia , Idoso , Idoso de 80 Anos ou mais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Autoantígenos/genética , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , DNA Complementar/genética , Proteínas de Ligação a DNA , Feminino , Humanos , Masculino , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Paraproteinemias/genética , Paraproteinemias/terapia , Receptores Patched , Receptor Patched-1 , Proteínas/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Transdução de Sinais/imunologia , Transplante de Células-Tronco , Linfócitos T/imunologia , Fatores de Transcrição , Transplante Autólogo , beta Catenina/genética , beta Catenina/imunologia
16.
Blood ; 114(2): 371-9, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19417213

RESUMO

Decreased activity of osteoblasts (OBs) contributes to osteolytic lesions in multiple myeloma (MM). The production of the soluble Wnt inhibitor Dickkopf-1 (DKK1) by MM cells inhibits OB activity, and its serum level correlates with focal bone lesions in MM. Therefore, we have evaluated bone anabolic effects of a DKK1 neutralizing antibody (BHQ880) in MM. In vitro BHQ880 increased OB differentiation, neutralized the negative effect of MM cells on osteoblastogenesis, and reduced IL-6 secretion. In a severe combined immunodeficiency (SCID)-hu murine model of human MM, BHQ880 treatment led to a significant increase in OB number, serum human osteocalcin level, and trabecular bone. Although BHQ880 had no direct effect on MM cell growth, it significantly inhibited growth of MM cells in the presence of bone marrow stromal cells (BMSCs) in vitro. This effect was associated with inhibition of BMSC/MM cell adhesion and production of IL-6. In addition, BHQ880 up-regulated beta-catenin level while down-regulating nuclear factor-kappaB (NF-kappaB) activity in BMSC. Interestingly, we also observed in vivo inhibition of MM cell growth by BHQ880 treatment in the SCID-hu murine model. These results confirm DKK1 as an important therapeutic target in myeloma and provide the rationale for clinical evaluation of BHQ880 to improve bone disease and to inhibit MM growth.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Imunoterapia , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Mieloma Múltiplo/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Diferenciação Celular , Células Cultivadas , Progressão da Doença , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/imunologia , Osteogênese/efeitos dos fármacos , Osteogênese/imunologia
17.
Proc Natl Acad Sci U S A ; 105(4): 1285-90, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18202175

RESUMO

Monoclonal gammopathy of undetermined significance (MGUS) is a common disorder of aging and a precursor lesion to full-blown multiple myeloma (MM). The mechanisms underlying the progression from MGUS to MM are incompletely understood but include the suppression of innate and adaptive antitumor immunity. Here, we demonstrate that NKG2D, an activating receptor on natural killer (NK) cells, CD8(+) T lymphocytes, and MHC class I chain-related protein A (MICA), an NKG2D ligand induced in malignant plasma cells through DNA damage, contribute to the pathogenesis of MGUS and MM. MICA expression is increased on plasma cells from MGUS patients compared with normal donors, whereas MM patients display intermediate MICA levels and a high expression of ERp5, a protein disulfide isomerase linked to MICA shedding (sMICA). MM, but not MGUS, patients harbor circulating sMICA, which triggers the down-regulation of NKG2D and impaired lymphocyte cytotoxicity. In contrast, MGUS, but not MM, patients generate high-titer anti-MICA antibodies that antagonize the suppressive effects of sMICA and stimulate dendritic cell cross-presentation of malignant plasma cells. Bortezomib, a proteasome inhibitor with anti-MM clinical efficacy, activates the DNA damage response to augment MICA expression in some MM cells, thereby enhancing their opsonization by anti-MICA antibodies. Together, these findings reveal that the alterations in the NKG2D pathway are associated with the progression from MGUS to MM and raise the possibility that anti-MICA monoclonal antibodies might prove therapeutic for these disorders.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Isoanticorpos/metabolismo , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ácidos Borônicos/farmacologia , Ácidos Borônicos/uso terapêutico , Bortezomib , Linhagem Celular Tumoral , Apresentação Cruzada , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Progressão da Doença , Antígenos de Histocompatibilidade Classe I/biossíntese , Humanos , Isoanticorpos/uso terapêutico , Ligantes , Mieloma Múltiplo/metabolismo , Prognóstico , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Células Tumorais Cultivadas
18.
Oncotarget ; 12(24): 2323-2337, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34853656

RESUMO

CCL20-CCR6 interactions promote colorectal cancer through direct effects on neoplastic epithelial cells and through modulating the tumor microenvironment. The mechanism of these effects on neoplastic epithelial cells is poorly understood. This study demonstrates that CCL20 induces secretion of hepatocyte growth factor (HGF) and phosphorylation of HGF's cognate receptor c-Met in HT29 and HCT116 colorectal cancer cell lines both in concentration- and time-dependent manners. Similar to CCL20, HGF induces migration, autofeedback CCL20 secretion, and ERK1/2 phosphorylation in the colon cancer cells. CCL20-dependent ERK1/2 phosphorylation is blocked by HGF inhibition, and CCL20-dependent migration and CCL20 secretion are blocked by inhibition of HGF or ERK. Interestingly, unlike CCL20, HGF does not induce proliferation of colon cancer cells, and CCL20-dependent cell proliferation is not blocked by direct HGF inhibition. CCL20-dependent proliferation, however, is blocked by the multi-tyrosine kinase inhibitor crizotinib. Exploring this effect, it was found that CCL20 also induces production of MSP and phosphorylation of MSP's receptor MSPR by the colorectal cancer cells. CCL20-dependent cell proliferation is inhibited by directly blocking MSP-MSPR interactions. Thus, CCL20-mediated migration and CCL20 secretion are regulated through a pathway involving HGF, c-Met, and ERK, while CCL20-mediated proliferation is instead regulated through MSP and its receptor MSPR.

19.
Commun Biol ; 4(1): 617, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031527

RESUMO

Esophageal adenocarcinoma (EAC) is associated with a marked genomic instability, which underlies disease progression and development of resistance to treatment. In this study, we used an integrated genomics approach to identify a genomic instability signature. Here we show that elevated expression of this signature correlates with poor survival in EAC as well as three other cancers. Knockout and overexpression screens establish the relevance of these genes to genomic instability. Indepth evaluation of three genes (TTK, TPX2 and RAD54B) confirms their role in genomic instability and tumor growth. Mutational signatures identified by whole genome sequencing and functional studies demonstrate that DNA damage and homologous recombination are common mechanisms of genomic instability induced by these genes. Our data suggest that the inhibitors of TTK and possibly other genes identified in this study have potential to inhibit/reduce growth and spontaneous as well as chemotherapy-induced genomic instability in EAC and possibly other cancers.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/metabolismo , Neoplasias Esofágicas/patologia , Evolução Molecular , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Mutação , Adenocarcinoma/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Neoplasias Esofágicas/genética , Feminino , Instabilidade Genômica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Sequenciamento Completo do Genoma , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Blood Cancer J ; 11(10): 166, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625538

RESUMO

Multiple myeloma (MM) is a heterogeneous disease characterized by significant genomic instability. Recently, a causal role for the AID/APOBEC deaminases in inducing somatic mutations in myeloma has been reported. We have identified APOBEC/AID as a prominent mutational signature at diagnosis with further increase at relapse in MM. In this study, we identified upregulation of several members of APOBEC3 family (A3A, A3B, A3C, and A3G) with A3G, as one of the most expressed APOBECs. We investigated the role of APOBEC3G in MM and observed that A3G expression and APOBEC deaminase activity is elevated in myeloma cell lines and patient samples. Loss-of and gain-of function studies demonstrated that APOBEC3G significantly contributes to increase in DNA damage (abasic sites and DNA breaks) in MM cells. Evaluation of the impact on genome stability, using SNP arrays and whole genome sequencing, indicated that elevated APOBEC3G contributes to ongoing acquisition of both the copy number and mutational changes in MM cells over time. Elevated APOBEC3G also contributed to increased homologous recombination activity, a mechanism that can utilize increased DNA breaks to mediate genomic rearrangements in cancer cells. These data identify APOBEC3G as a novel gene impacting genomic evolution and underlying mechanisms in MM.


Assuntos
Desaminase APOBEC-3G/metabolismo , Dano ao DNA , Instabilidade Genômica , Mieloma Múltiplo/enzimologia , Mutação , Proteínas de Neoplasias/metabolismo , Desaminase APOBEC-3G/genética , Linhagem Celular Tumoral , Humanos , Mieloma Múltiplo/genética , Proteínas de Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa