Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 62(28): 7503-7511, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855520

RESUMO

The design study of a micro illumination tool based on GaN microLED arrays is presented. The high spatio-temporal resolution and the capability of generating fully customized optical patterns that characterize the proposed platform would enable the manipulation of biological systems, e.g., for optogenetics applications. Based on ray tracing simulations, the design aspects that mainly affect the device performance have been identified, and the related structural parameters have been optimized to improve the extraction efficiency and the spatial resolution of the resulting light patterns. Assuming that the device is a bottom emitter, and the light is extracted from the n-side, the presence of mesa-structures on the p-side of the GaN layer can affect both the efficiency and the resolution, being optimized for different values of the mesa-side inclination angle. The full width at half maximum (FWHM) of the extracted spots is mainly determined by the substrate thickness, and the relation between the FWHM and the array pitch represents a criterion to define the resolution. Namely, when F W H M

2.
Biosensors (Basel) ; 14(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38920568

RESUMO

A Point-of-Care system for molecular diagnosis (PoC-MD) is described, combining GaN and CMOS chips. The device is a micro-system for fluorescence measurements, capable of analyzing both intensity and lifetime. It consists of a hybrid micro-structure based on a 32 × 32 matrix addressable GaN microLED array, with square LEDs of 50 µm edge length and 100 µm pitch, with an underneath wire bonded custom chip integrating their drivers and placed face-to-face to an array of 16 × 16 single-photon avalanche diodes (SPADs) CMOS. This approach replaces instrumentation based on lasers, bulky optical components, and discrete electronics with a full hybrid micro-system, enabling measurements on 32 × 32 spots. The reported system is suitable for long lifetime (>10 ns) fluorophores with a limit of detection ~1/4 µM. Proof-of-concept measurements of streptavidin conjugate Qdot™ 605 and Amino PEG Qdot™ 705 are demonstrated, along with the device ability to detect both fluorophores in the same measurement.


Assuntos
Técnicas Biossensoriais , Fluorescência , Sistemas Automatizados de Assistência Junto ao Leito , Espectrometria de Fluorescência
3.
J Colloid Interface Sci ; 582(Pt B): 658-668, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32911413

RESUMO

A highly sensitive and rapidly responsive nitrogen dioxide (NO2) gas sensor based on gold (Au) nanoparticles (NPs)-decorated zinc oxide (ZnO) nanowires (NWs) is presented. The Au NPs decoration was conducted onto ZnO NWs with and without a (3-aminopropyl)triethoxysilane (APTES) layer on their surface by using the electrostatic force. The samples without the APTES layer exhibited high NO2 gas sensitivity (i.e. expedited response time and enhanced gas response) due to localized surface plasmon resonance (LSPR) of the Au NPs; in particular, the NO2 gas response and the response time were increased by three times and shortened by 86%, respectively, compared with the undecorated ZnO NWs. The presence of the APTES layer improved the Au NPs attachment, but hindering the gas adsorption on the ZnO NWs surface, as proven by the observed photocurrent and gas response. Our findings imply that the response time of semiconductor gas sensors can be remarkably expedited by the LSPR effect, which is useful for developing practical gas sensors.

4.
Phys Chem Chem Phys ; 12(10): 2401-6, 2010 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-20449353

RESUMO

Metal oxides present oxygen defects that induce different chemical and physical properties. Experiments performed in SnO(2-x) sensors show that the dynamics of these vacancies are strongly affected by the presence of different gases in the environment. Experimentally, the electrical resistance of individual metal oxide SnO(2-x) nanowires shows modulation: when the environment is oxygen rich long term drifts (hours) are observed indicating extended vacancy dynamics. Instead, if CO is present, drifts disappear in minutes. Density functional theory indicates that changes in resistance follow the extension of reoxidation. For oxygen-poor environments, oxygen vacancy excorporation and healing are confined to the near-surface layer of SnO(2-x) (bidimensional or near-surface diffusion), and completed in short times. Under oxygen-rich conditions, tridimensional diffusion of oxygen vacancies towards the surface takes place at room temperature. In this case, a push-pull mechanism allows bulk-to-surface diffusion and as a consequence resistance drifts are longer and the vacancy quenching is more extensive.


Assuntos
Oxigênio/química , Compostos de Estanho/química , Simulação por Computador , Difusão , Eletrodos , Gases/química , Modelos Químicos , Nanofios/química , Propriedades de Superfície
5.
Nanomaterials (Basel) ; 8(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563261

RESUMO

Surface ionization (SI) provides a simple, sensitive, and selective method for the detection of high-proton affinity substances, such as organic decay products, medical and illicit drugs as well as a range of other hazardous materials. Tests on different kinds of SI sensors showed that the sensitivity and selectivity of such devices is not only dependent on the stoichiometry and nanomorphology of the emitter materials, but also on the shape of the electrode configurations that are used to read out the SI signals. Whereas, in parallel-plate capacitor devices, different kinds of emitter materials exhibit a high level of amine-selectivity, MEMS (micro-electro-mechanical-systems) and NEMS (nanowire) versions of SI sensors employing the same kinds of emitter materials provide significantly higher sensitivity, however, at the expense of a reduced chemical selectivity. In this paper, it is argued that such sensitivity-selectivity trade-offs arise from unselective physical ionization phenomena that occur in the high-field regions immediately adjacent to the surfaces of sharply curved MEMS (NEMS) emitter and collector electrodes.

6.
Adv Mater ; 26(47): 8017-22, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25355241

RESUMO

Selectivity and low power consumption are major challenges in the development of sophisticated gas sensor devices. A sensor system is presented that unifies selective sensor-gas interactions and energy-harvesting properties, using defined organic-inorganic hybrid materials. Simulations of chemical-binding interactions and the consequent electronic surface modulation give more insight into the complex sensing mechanism of selective gas detection.

7.
Phys Chem Chem Phys ; 11(19): 3634-9, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19421473

RESUMO

Density functional theory (DFT) modelling of the alkane-SnO2 surface interaction correctly predicts the results of the chemoresistive alkane sensing tests, provided that the highly reduced nature of the SnO2 nanocrystal surface is properly inserted in the model.

8.
Phys Chem Chem Phys ; 11(33): 7105-10, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19672516

RESUMO

Single-crystalline semiconductor metal oxide nanowires exhibit novel structural and electrical properties attributed to their reduced dimensions, well-defined geometry and the negligible presence of grain boundaries and dislocations in their inside. This favours direct chemical transduction mechanisms at their surfaces upon exposure to gas molecules, making them promising active device elements for a new generation of chemical sensors. Furthermore, metal oxide nanowires can be heated up to the optimal operating temperature for gas sensing applications with extremely low power consumption due to their small mass, giving rise to devices more efficient than their nanoparticle-based counterparts. Here, the current status of development of sensors based on individual metal oxide nanowires is surveyed, and the main technological challenges which act as bottleneck to their potential use in real applications are presented.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa