Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(4): e202203055, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36197081

RESUMO

Reported herein is a reactivity of propargyl alcohols as "Three-Carbon Synthons" in a Rh(III)-catalyzed C-H functionalization of acetanilides, leading to the synthesis of core structures of isocryptolepine, γ-carbolines, dihydrochromeno[2,3-b]indoles, and diindolylmethanes (DIM) derivatives. The transformation involves a rhodium(III)-catalyzed C-H functionalization and heteroannulation to yield indoles followed by a cascade cyclization with both external and internal nucleophiles to afford diverse products. The role of the hydroxy group, the key function of the silver additive, the origin of the reverse regioselectivity and the rate-determining step, are rationalized in conformity with the combination of experimental, noncovalent interaction analysis and DFT studies. This protocol is endowed with several salient features, including one-pot multistep cascade approach, exclusive regioselectivity, good functional group tolerance and synthesis of variety of molecular frameworks.

2.
Angew Chem Int Ed Engl ; 61(38): e202208046, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35859267

RESUMO

The fundamental challenge of C-F bond formation by reductive elimination has been met by compounds of select transition metals and fewer main group elements. The work detailed herein expands the list of main group elements known to be capable of reductively eliminating a C-F bond to include tellurium. Surprising and novel modes of both sp2 and sp3 C-F bond formation were observed alongside formation of TeIV cations during two separate attempts to synthesize/characterize fluorinated organotellurium(VI) cations in superacidic media (SbF5 /SO2 ClF). Following detailed low-temperature NMR experiments, the mechanisms of the two unique reductive elimination reactions were probed and investigated using density functional theory (DFT) calculations. Ultimately, we found that an "indirect" reductive elimination pathway is likely operative whereby Sb plays a key role in fluoride abstraction and C-F bond formation, as opposed to unimolecular reductive elimination from a discrete TeVI cation.

3.
Inorg Chem ; 58(23): 15983-15992, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31713428

RESUMO

A combined synthetic-theoretical study has been undertaken to determine the factors that influence transannulation in azaphosphatranes. The commonly used proazaphosphatrane P(i-BuNCH2CH2)3N and several of its oxidized congeners are used as model systems. The haloazaphosphatranes of P(i-BuNCH2CH2)3N were synthesized, including a rare fluoroazaphopshatrane, and used as references for computational investigations. Comparisons of the experimental and theoretical observations highlight the flexibility observed in transannulated atranes and the potential for multiple local energetic minima depending on the identity of the equatorial substituents for a given azaphosphatrane. Theoretical calculations also identify the role of the ethylene linker in azaphosphatrane bonding, the influence of transannulation on P-electrophile interactions, and the contribution of electrostatic interactions to transannulation.

4.
J Phys Chem A ; 122(46): 9065-9072, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30380860

RESUMO

The bonding preferences in the mixed dihalides (MXY) of groups 2 and 12 metals, including the extent of any anomalous bending, are assessed and established. The deviation from linearity in group 2 metal binary dihalides is well-known, runs contrary to simple bonding models, and is believed to be decisive for structural preferences in the extended solids. Yet the bonding in the ternary, MXY, molecules has not been investigated systematically until now. The structure and bonding in these ternary systems (and, for completeness, the binary cases as well) are determined herein at high levels of theory. A softness criterion formulated by Szentpály and Schwerdtfeger, and tested initially on binary dihalides with predictions for mixed systems, is confirmed to apply broadly for binary and ternary species of the group 2 and 12 metals. For each M, a function of the form E(Θ) = Ae- kΘ is shown to predict the barriers to linearization for all of the bent molecules. The extended solids of some of the ternary dihalides are of interest for their optical properties. The bonding in the molecular (MXY) units may offer we think some new perspectives from which to rationalize the bonding preferences in those crystal structures.

5.
J Phys Chem A ; 121(46): 8982-8994, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29072458

RESUMO

Monovalent boron, free borylene species of the form B-R are notoriously unstable. Consequently, there are substantial gaps in the literature concerning the potential utility of those species in organic and inorganic synthesis either as ligands or as critical intermediates in reactions. We show that the relative stability of borylene complexes varies widely, depending on the electron donating ability of the R group. We find that borylenes can form, in the gas phase, weak sigma hole type interactions to saturated carbon centers and stronger dative bonds to tetravalent silicon and germanium. An insertion reaction of the form FH3M + BR → FH2MBHR competes against dative bonding, however, and the reaction is barrierless in several cases when M = Si and in a few cases when M = Ge. For M = C, the barriers are high enough to stabilize monovalent boron complexes. In each case, the barrier heights to M-H bond activation and BR insertion are very sensitive to the nucleophilicity of BR. We confirm, at the MP2(full) and CCSD(T) levels, a substantial preference in borylenes for the singlet over the triplet state. An account is provided at the B3LYP-D3 and MP2(full) levels for the facile insertion reaction on the singlet surface when M = Si and for the stability of FH3M·BR type complexes and the higher barriers to insertion when M = C and Ge.

6.
ACS Omega ; 6(44): 29685-29691, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34778640

RESUMO

Basicities for derivatives of patriscabrin A and lettucenin A were calculated with density functional theory. A significant correlation is observed between the basicity and Hammett σ parameters. Protonation increases the aromatic character of the cyclic moieties of each natural product. The naturally occurring structures are predicted to be the most aromatic.

7.
Chempluschem ; 86(10): 1387-1396, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34464519

RESUMO

The nature of halogen bonding under different dielectric conditions remains underexplored, especially for inorganic systems. The structural and energetic properties of model halogen bonded complexes (R3 M-I-NH3 for R=H and F, and M=C, Si, and Ge) are examined computationally for relative permittivities between 1 and 109 using an implicit solvent model. We confirm and assess the exceptionally high maximum potentials at the sigma hole on I (Vs,max ) in F3 Ge-I relative to cases where M=C or Si. In particular, Ge far outperforms Si in mediating inductive effects. Linear relationships, typically with R2 >0.97, are identified between Vs,max , the full point charge on I in R3 M-I, and the interaction energy, and optimized I-N distance in the complexes. An anomalous trend is identified in which, for each M, F3 M-I-NH3 becomes less stable as the optimized I-N distance gets shorter in different dielectric environments; it is explained using the F-I-NH3 complex as a reference.

8.
ACS Omega ; 6(41): 27216-27224, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693141

RESUMO

We report the influence of substituents and physical conditions on activation energies for the noncatalyzed amination (C-N cross-coupling reactions) of aryl halides. We uncover a significant correlation between the barrier heights of the C-N bond formation and Hammett σ parameters-a formal measure of the electron-withdrawing or -donating ability of substituents on the aryl halides. Our results indicate that such correlations are useful predictive tools for the amination of aryl halides over a wide range of substituent types. From 54 cases studied (six substituents occupying specific positions relative to halogen atoms), the 2-COOHPhI + NH2 n Pr amination reaction is predicted to possess the lowest noncatalyzed activation free energy (135.6 kJ mol-1) using the B3LYP method. The lower barriers for the 2-COOHPhX (for X = Cl, Br, and I) compounds are shown to originate from collusion between steric and electronic effects-specifically, the momentary formation of a hydrogen bond between an oxygen site on the ortho-COOH and the lone pair of the entering amine. Internal reaction coordinate (IRC) path calculations afforded us these and other key insights into the nature of the reactions. The control exerted by substituents on the arrangement of the transition state structure, as well as the sensitivity of the reaction barriers to temperature and solvent polarity, are discussed. These results offer new perspectives from which to assess the nature of the C-N bond formation and suggest new avenues for future exploration, especially in progress toward the metal-free amination of aryl compounds.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa