Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Clin Microbiol Infect Dis ; 43(7): 1329-1342, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750334

RESUMO

PURPOSE: Staphylococcus aureus is one of the most common pathogens causing bloodstream infection. A rapid characterisation of resistance to methicillin and, occasionally, to aminoglycosides for particular indications, is therefore crucial to quickly adapt the treatment and improve the clinical outcomes of septic patients. Among analytical technologies, targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a promising tool to detect resistance mechanisms in clinical samples. METHODS: A rapid proteomic method was developed to detect and quantify the most clinically relevant antimicrobial resistance effectors in S. aureus in the context of sepsis: PBP2a, PBP2c, APH(3')-III, ANT(4')-I, and AAC(6')-APH(2''), directly from positive blood cultures and in less than 70 min including a 30-min cefoxitin-induction step. The method was tested on spiked blood culture bottles inoculated with 124 S.aureus, accounting for the known genomic diversity of SCCmec types and the genetic background of the strains. RESULTS: This method provided 99% agreement for PBP2a (n = 98/99 strains) detection. Agreement was 100% for PBP2c (n = 5/5), APH(3')-III (n = 16/16), and ANT(4')-I (n = 20/20), and 94% for AAC(6')-APH(2'') (n = 16/17). Across the entire strain collection, 100% negative agreement was reported for each of the 5 resistance proteins. Additionally, relative quantification of ANT(4')-I expression allowed to discriminate kanamycin-susceptible and -resistant strains, in all strains harbouring the ant(4')-Ia gene. CONCLUSION: The LC-MS/MS method presented herein demonstrates its ability to provide a reliable determination of S. aureus resistance mechanisms, directly from positive blood cultures and in a short turnaround time, as required in clinical laboratories.


Assuntos
Proteínas de Bactérias , Hemocultura , Proteômica , Infecções Estafilocócicas , Staphylococcus aureus , Espectrometria de Massas em Tandem , Humanos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Proteômica/métodos , Hemocultura/métodos , Infecções Estafilocócicas/microbiologia , Proteínas de Bactérias/genética , Cromatografia Líquida/métodos , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana/métodos , Antibacterianos/farmacologia
2.
Front Microbiol ; 14: 1285236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029165

RESUMO

Introduction: Aminopenicillins resistance among Campylobacter jejuni and Campylobacter coli strains is associated with a single mutation in the promoting region of a chromosomal beta-lactamase blaOXA61, allowing its expression. Clavulanic acid is used to restore aminopenicillins activity in case of blaOXA61 expression and has also an inherent antimicrobial activity over Campylobacter spp. Resistance to amoxicillin-clavulanic acid is therefore extremely rare among these species: only 0.1% of all Campylobacter spp. analyzed in the French National Reference Center these last years (2017-2022). Material and methods: Whole genome sequencing with bioinformatic resistance identification combined with mass spectrometry (MS) was used to identify amoxicillin-acid clavulanic resistance mechanism in Campylobacters. Results: A G57T mutation in blaOXA61 promoting region was identified in all C. jejuni and C. coli ampicillin resistant isolates and no mutation in ampicillin susceptible isolates. Interestingly, three C. coli resistant to both ampicillin and amoxicillin-clavulanic acid displayed a supplemental deletion in the promoting region of blaOXA61 beta-lactamase, at position A69. Using MS, a significant difference in the expression of BlaOXA61 was observed between these three isolates and amoxicillin-clavulanic acid susceptible C. coli. Conclusion: A combined genomics/proteomics approach allowed here to identify a rare putative resistance mechanism associated with amoxicillin-clavulanic acid resistance for C. coli.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa