RESUMO
OBJECTIVES: This retrospective study aimed to identify quantitative magnetic resonance imaging markers in the brainstem of preterm neonates with intraventricular hemorrhages. It delves into the intricate associations between quantitative brainstem magnetic resonance imaging metrics and neurodevelopmental outcomes in preterm infants with intraventricular hemorrhage, aiming to elucidate potential relationships and their clinical implications. MATERIALS AND METHODS: Neuroimaging was performed on preterm neonates with intraventricular hemorrhage using a multi-dynamic multi-echo sequence to determine T1 relaxation time, T2 relaxation time, and proton density in specific brainstem regions. Neonatal outcome scores were collected using the Bayley Scales of Infant and Toddler Development. Statistical analysis aimed to explore potential correlations between magnetic resonance imaging metrics and neurodevelopmental outcomes. RESULTS: Sixty preterm neonates (mean gestational age at birth 26.26 ± 2.69 wk; n = 24 [40%] females) were included. The T2 relaxation time of the midbrain exhibited significant positive correlations with cognitive (r = 0.538, P < 0.0001, Pearson's correlation), motor (r = 0.530, P < 0.0001), and language (r = 0.449, P = 0.0008) composite scores at 1 yr of age. CONCLUSION: Quantitative magnetic resonance imaging can provide valuable insights into neurodevelopmental outcomes after intraventricular hemorrhage, potentially aiding in identifying at-risk neonates. Multi-dynamic multi-echo sequence sequences hold promise as an adjunct to conventional sequences, enhancing the sensitivity of neonatal magnetic resonance neuroimaging and supporting clinical decision-making for these vulnerable patients.
Assuntos
Tronco Encefálico , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Recém-Nascido , Estudos Retrospectivos , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/crescimento & desenvolvimento , Lactente , Hemorragia Cerebral Intraventricular/diagnóstico por imagem , Hemorragia Cerebral/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/etiologia , Idade GestacionalRESUMO
OBJECTIVE: To identify brain edema in fetuses with Chiari II malformation using a multiparametric approach including structural T2-weighted, diffusion tensor imaging (DTI) metrics, and MRI-based radiomics. METHODS: A single-center retrospective review of MRI scans obtained in fetuses with Chiari II was performed. Brain edema cases were radiologically identified using the following MR criteria: brain parenchymal T2 prolongation, blurring of lamination, and effacement of external CSF spaces. Fractional anisotropy (FA) values were calculated from regions of interest (ROI), including hemispheric parenchyma, internal capsule, and corticospinal tract, and compared group-wise. After 1:1 age matching and manual single-slice 2D segmentation of the fetal brain parenchyma using ITK-Snap, radiomics features were extracted using pyradiomics. Areas under the curve (AUCs) of the features regarding discriminating subgroups were calculated. RESULTS: Ninety-one fetuses with Chiari II underwent a total of 101 MRI scans at a median gestational age of 24.4 weeks and were included. Fifty scans were visually classified as Chiari II with brain edema group and showed significantly reduced external CSF spaces compared to the nonedema group (9.8 vs. 18.3 mm, p < 0.001). FA values of all used ROIs were elevated in the edema group (p < 0.001 for all ROIs). The 10 most important radiomics features showed an AUC of 0.81 (95%CI: 0.71, 0.91) for discriminating between Chiari II fetuses with and without edema. CONCLUSIONS: Brain edema in fetuses with Chiari II is common and radiologically detectable on T2-weighted fetal MRI sequences, and DTI-based FA values and radiomics features provide further evidence of microstructure differences between subgroups with and without edema. CLINICAL RELEVANCE STATEMENT: A more severe phenotype of fetuses with Chiari II malformation is characterized by prenatal brain edema and more postnatal clinical morbidity and disability. Fetal brain edema is a promising prenatal MR imaging biomarker candidate for optimizing the risk-benefit evaluation of selection for fetal surgery. KEY POINTS: Brain edema of fetuses prenatally diagnosed with Chiari II malformation is a common, so far unknown, association. DTI metrics and radiomics confirm microstructural differences between the brains of Chiari II fetuses with and without edema. Fetal brain edema may explain worse motor outcomes in this Chiari II subgroup, who may substantially benefit from fetal surgery.
Assuntos
Malformação de Arnold-Chiari , Edema Encefálico , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Diagnóstico Pré-Natal , Humanos , Feminino , Gravidez , Estudos Retrospectivos , Malformação de Arnold-Chiari/diagnóstico por imagem , Malformação de Arnold-Chiari/complicações , Malformação de Arnold-Chiari/cirurgia , Edema Encefálico/diagnóstico por imagem , Diagnóstico Pré-Natal/métodos , Imageamento por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , AdultoRESUMO
Measuring and understanding functional fetal brain development in utero is critical for the study of the developmental foundations of our cognitive abilities, possible early detection of disorders, and their prevention. Thalamocortical connections are an intricate component of shaping the cortical layout, but so far, only ex-vivo studies provide evidence of how axons enter the sub-plate and cortex during this highly dynamic phase. Evidence for normal in-utero development of the functional thalamocortical connectome in humans is missing. Here, we modeled fetal functional thalamocortical connectome development using in-utero functional magnetic resonance imaging in fetuses observed from 19th to 40th weeks of gestation (GW). We observed a peak increase of thalamocortical functional connectivity strength between 29th and 31st GW, right before axons establish synapses in the cortex. The cortico-cortical connectivity increases in a similar time window, and exhibits significant functional laterality in temporal-superior, -medial, and -inferior areas. Homologous regions exhibit overall similar mirrored connectivity profiles, but this similarity decreases during gestation giving way to a more diverse cortical interconnectedness. Our results complement the understanding of structural development of the human connectome and may serve as the basis for the investigation of disease and deviations from a normal developmental trajectory of connectivity development.
Assuntos
Córtex Cerebral , Conectoma , Humanos , Tálamo , Imageamento por Ressonância Magnética/métodos , Encéfalo , Desenvolvimento Fetal , Conectoma/métodos , Vias NeuraisRESUMO
Prenatal alcohol exposure (PAE) can change the normal trajectory of human fetal brain development and may lead to long-lasting neurodevelopmental changes in the form of fetal alcohol spectrum disorders. Currently, early prenatal patterns of alcohol-related central nervous system changes are unclear and it is unknown if small amounts of PAE may result in early detectable brain anomalies. This super-resolution fetal magnetic resonance imaging (MRI) study aimed to identify regional effects of PAE on human brain structure. Fetuses were prospectively assessed using atlas-based semi-automated 3-dimensional tissue segmentation based on 1.5 T and 3 T fetal brain MRI examinations. After expectant mothers completed anonymized PRAMS and TACE questionnaires for PAE, fetuses without gross macroscopic brain abnormalities were identified and analyzed. Linear mixed-effects modeling of regional brain volumes was conducted and multiple comparisons were corrected using the Benjamini-Hochberg procedure. In total, 500 pregnant women were recruited with 51 reporting gestational alcohol consumption. After excluding confounding comorbidities, 24 fetuses (26 observations) were identified with PAE and 52 age-matched controls without PAE were analyzed. Patients with PAE showed significantly larger volumes of the corpus callosum (P ≤ 0.001) and smaller volumes of the periventricular zone (P = 0.001). Even minor (1-3 standard drinks per week) PAE changed the neurodevelopmental trajectory.
Assuntos
Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Feminino , Efeitos Tardios da Exposição Pré-Natal/diagnóstico por imagem , Encéfalo , Feto/diagnóstico por imagem , Corpo Caloso , Imageamento por Ressonância Magnética/métodosRESUMO
INTRODUCTION: This study aimed to assess the visibility of the indusium griseum (IG) in magnetic resonance (MR) scans of the human fetal brain and to evaluate its reliability as an imaging biomarker of the normality of brain midline development. MATERIAL AND METHODS: The retrospective observational study encompassed T2-w 3T MR images from 90 post-mortem fetal brains and immunohistochemical sections from 41 fetal brains (16-40 gestational weeks) without cerebral pathology. Three raters independently inspected and evaluated the visibility of IG in post-mortem and in vivo MR scans. Weighted kappa statistics and regression analysis were used to determine inter- and intra-rater agreement and the type and strength of the association of IG visibility with gestational age. RESULTS: The visibility of the IG was the highest between the 25 and 30 gestational week period, with a very good inter-rater variability (kappa 0.623-0.709) and excellent intra-rater variability (kappa 0.81-0.93). The immunochemical analysis of the histoarchitecture of IG discloses the expression of highly hydrated extracellular molecules in IG as the substrate of higher signal intensity and best visibility of IG during the mid-fetal period. CONCLUSIONS: The knowledge of developmental brain histology and fetal age allows us to predict the IG-visibility in magnetic resonance imaging (MRI) and use it as a biomarker to evaluate the morphogenesis of the brain midline. As a biomarker, IG is significant for post-mortem pathological examination by MRI. Therefore, in the clinical in vivo imaging examination, IG should be anticipated when an assessment of the brain midline structures is needed in mid-gestation, including corpus callosum thickness measurements.
Assuntos
Corpo Caloso , Imageamento por Ressonância Magnética , Feminino , Humanos , Biomarcadores , Lobo Límbico , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Reprodutibilidade dos Testes , GravidezRESUMO
OBJECTIVE: Anterior temporal lobectomy (ATL) and transsylvian selective amygdalohippocampectomy (tsSAHE) are effective treatment strategies for intractable temporal lobe epilepsy but may cause visual field deficits (VFDs) by damaging the optic radiation (OpR). Due to the OpR's considerable variability and because it is indistinguishable from surrounding tissue without further technical guidance, it is highly vulnerable to iatrogenic injury. This imaging study uses a multimodal approach to assess visual outcomes after epilepsy surgery. METHODS: We studied 62 patients who underwent ATL (n = 32) or tsSAHE (n = 30). Analysis of visual outcomes was conducted in four steps, including the assessment of (1) perimetry outcome (VFD incidence/extent, n = 44/40), (2) volumetric OpR tractography damage (n = 55), and the (3) relation of volumetric OpR tractography damage and perimetry outcome (n = 35). Furthermore, (4) fixel-based analysis (FBA) was performed to assess micro- and macrostructural changes within the OpR following surgery (n = 36). RESULTS: Altogether, 56% of all patients had postoperative VFDs (78.9% after ATL, 36.36% after tsSAHE, p = .011). VFDs and OpR tractography damage tended to be more severe within the ATL group (ATL vs. tsSAHE, integrity of contralateral upper quadrant: 65% vs. 97%, p = .002; OpR tractography damage: 69.2 mm3 vs. 3.8 mm3 , p = .002). Volumetric OpR tractography damage could reliably predict VFD incidence (86% sensitivity, 78% specificity) and could significantly explain VFD extent (R2 = .47, p = .0001). FBA revealed a more widespread decline of fibre cross-section within the ATL group. SIGNIFICANCE: In the context of controversial visual outcomes following epilepsy surgery, this study provides clinical as well as neuroimaging evidence for a higher risk and greater severity of postoperative VFDs after ATL compared to tsSAHE. Volumetric OpR tractography damage is a feasible parameter to reliably predict this morbidity in both treatment groups and may ultimately support personalized planning of surgical candidates. Advanced diffusion analysis tools such as FBA offer a structural explanation of surgically induced visual pathway damage, allowing noninvasive quantification and visualization of micro- and macrostructural tract affection.
Assuntos
Lobectomia Temporal Anterior , Epilepsia do Lobo Temporal , Humanos , Lobectomia Temporal Anterior/métodos , Transtornos da Visão/etiologia , Epilepsia do Lobo Temporal/cirurgia , Campos Visuais , Neuroimagem , Resultado do Tratamento , Hipocampo/cirurgiaRESUMO
OBJECTIVES: To assess the reproducibility of radiomics features extracted from the developing lung in repeated in-vivo fetal MRI acquisitions. METHODS: In-vivo MRI (1.5 Tesla) scans of 30 fetuses, each including two axial and one coronal T2-weighted sequences of the whole lung with all other acquisition parameters kept constant, were retrospectively identified. Manual segmentation of the lungs was performed using ITK-Snap. One hundred radiomics features were extracted from fetal lung MRI data using Pyradiomics, resulting in 90 datasets. Intra-class correlation coefficients (ICC) of radiomics features were calculated between baseline and repeat axial acquisitions and between baseline axial and coronal acquisitions. RESULTS: MRI data of 30 fetuses (12 [40%] females, 18 [60%] males) at a median gestational age of 24 + 5 gestational weeks plus days (GW) (interquartile range [IQR] 3 + 3 GW, range 21 + 1 to 32 + 6 GW) were included. Median ICC of radiomics features between baseline and repeat axial MR acquisitions was 0.92 (IQR 0.13, range 0.33 to 1), with 60 features exhibiting excellent (ICC > 0.9), 27 good (> 0.75-0.9), twelve moderate (0.5-0.75), and one poor (ICC < 0.5) reproducibility. Median ICC of radiomics features between baseline axial and coronal MR acquisitions was 0.79 (IQR 0.15, range 0.2 to 1), with 20 features exhibiting excellent, 47 good, 29 moderate, and four poor reproducibility. CONCLUSION: Standardized in-vivo fetal MRI allows reproducible extraction of lung radiomics features. In the future, radiomics analysis may improve diagnostic and prognostic yield of fetal MRI in normal and pathologic lung development. KEY POINTS: ⢠Non-invasive fetal MRI acquired using a standardized protocol allows reproducible extraction of radiomics features from the developing lung for objective tissue characterization. ⢠Alteration of imaging plane between fetal MRI acquisitions has a negative impact on lung radiomics feature reproducibility. ⢠Fetal MRI radiomics features reflecting the microstructure and shape of the fetal lung could complement observed-to-expected lung volume in the prediction of postnatal outcome and optimal treatment of fetuses with abnormal lung development in the future.
Assuntos
Pulmão , Imageamento por Ressonância Magnética , Masculino , Feminino , Humanos , Lactente , Estudos Retrospectivos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem , Feto/diagnóstico por imagemRESUMO
OBJECTIVES: To investigate the advantage of T1-weighted fast fluid-attenuated inversion-recovery MRI sequence without (T1-FFLAIR) and with compressed sensing technology (T1-FFLAIR-CS), which shows improved T1-weighted contrast, over standard used T1-weighted fast field echo (T1-FFE) sequence for the assessment of fetal myelination. MATERIALS AND METHODS: This retrospective single-center study included 115 consecutive fetal brain MRI examinations (63 axial and 76 coronal, mean gestational age (GA) 28.56 ± 5.23 weeks, range 19-39 weeks). Two raters, blinded to GA, qualitatively assessed a fetal myelin total score (MTS) on each T1-weighted sequence at five brain regions (medulla oblongata, pons, mesencephalon, thalamus, central region). One rater performed region-of-interest quantitative analysis (n = 61) at the same five brain regions. Pearson correlation analysis was applied for correlation of MTS and of the signal intensity ratios (relative to muscle) with GA on each T1-weighted sequence. Fetal MRI-based results were compared with myelination patterns of postmortem fetal human brains (n = 46; GA 18 to 42), processed by histological and immunohistochemical analysis. RESULTS: MTS positively correlated with GA on all three sequences (all r between 0.802 and 0.908). The signal intensity ratios measured at the five brain regions correlated best with GA on T1-FFLAIR (r between 0.583 and 0.785). T1-FFLAIR demonstrated significantly better correlations with GA than T1-FFE for both qualitative and quantitative analysis (all p < 0.05). Furthermore, T1-FFLAIR enabled the best visualization of myelinated brain structures when compared to histology. CONCLUSION: T1-FFLAIR outperforms the standard T1-FFE sequence in the visualization of fetal brain myelination, as demonstrated by qualitative and quantitative methods. CLINICAL RELEVANCE STATEMENT: T1-weighted fast fluid-attenuated inversion-recovery sequence (T1-FFLAIR) provided best visualization and quantification of myelination in utero that, in addition to the relatively short acquisition time, makes feasible its routine application in fetal MRI for the assessment of brain myelination. KEY POINTS: ⢠So far, the assessment of fetal myelination in utero was limited due to the insufficient contrast. ⢠T1-weighted fast fluid-attenuated inversion-recovery sequence allows a qualitative and quantitative assessment of fetal brain myelination. ⢠T1-weighted fast fluid-attenuated inversion-recovery sequence outperforms the standard used T1-weighted sequence for visualization and quantification of myelination in utero.
RESUMO
The human brain varies across individuals in its morphology, function, and cognitive capacities. Variability is particularly high in phylogenetically modern regions associated with higher order cognitive abilities, but its relationship to the layout and strength of functional networks is poorly understood. In this study we disentangled the variability of two key aspects of functional connectivity: strength and topography. We then compared the genetic and environmental influences on these two features. Genetic contribution is heterogeneously distributed across the cortex and differs for strength and topography. In heteromodal areas genes predominantly affect the topography of networks, while their connectivity strength is shaped primarily by random environmental influence such as learning. We identified peak areas of genetic control of topography overlapping with parts of the processing stream from primary areas to network hubs in the default mode network, suggesting the coordination of spatial configurations across those processing pathways. These findings provide a detailed map of the diverse contribution of heritability and individual experience to the strength and topography of functional brain architecture.
Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Adulto , Cognição , Conectoma , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , GêmeosRESUMO
Motion correction is an essential preprocessing step in functional Magnetic Resonance Imaging (fMRI) of the fetal brain with the aim to remove artifacts caused by fetal movement and maternal breathing and consequently to suppress erroneous signal correlations. Current motion correction approaches for fetal fMRI choose a single 3D volume from a specific acquisition timepoint with least motion artefacts as reference volume, and perform interpolation for the reconstruction of the motion corrected time series. The results can suffer, if no low-motion frame is available, and if reconstruction does not exploit any assumptions about the continuity of the fMRI signal. Here, we propose a novel framework, which estimates a high-resolution reference volume by using outlier-robust motion correction, and by utilizing Huber L2 regularization for intra-stack volumetric reconstruction of the motion-corrected fetal brain fMRI. We performed an extensive parameter study to investigate the effectiveness of motion estimation and present in this work benchmark metrics to quantify the effect of motion correction and regularised volumetric reconstruction approaches on functional connectivity computations. We demonstrate the proposed framework's ability to improve functional connectivity estimates, reproducibility and signal interpretability, which is clinically highly desirable for the establishment of prognostic noninvasive imaging biomarkers. The motion correction and volumetric reconstruction framework is made available as an open-source package of NiftyMIC.
Assuntos
Artefatos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Feto/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Congenital heart disease is associated with an increased risk of smaller brain volumes and structural brain damage, and impaired growth of supratentorial brain structures in utero has been linked to poor neurodevelopmental outcomes. However, little is known on brainstem and cerebellar volumes in fetuses with congenital heart disease. Moreover, it is not clear whether impaired infratentorial growth, if present, is associated with only certain types of fetal cardiac defects or with supratentorial brain growth, and whether altered biometry is already present before the third trimester. OBJECTIVE: This study aimed to investigate brainstem and cerebellar volumes in fetuses with congenital heart disease and to compare them to infratentorial brain volumes in fetuses with normal hearts. Secondarily, the study aimed to identify associations between infratentorial brain biometry and the type of cardiac defects, supratentorial brain volumes, and gestational age. STUDY DESIGN: In this retrospective case-control study, 141 magnetic resonance imaging studies of 135 fetuses with congenital heart disease and 141 magnetic resonance imaging studies of 125 controls with normal hearts at 20 to 37 gestational weeks (median, 25 weeks) were evaluated. All cases and controls had normal birthweight and no evidence of structural brain disease or genetic syndrome. Six types of congenital heart disease were included: tetralogy of Fallot (n=32); double-outlet right ventricle (n=22); transposition of the great arteries (n=27); aortic obstruction (n=24); hypoplastic left heart syndrome (n=22); and hypoplastic right heart syndrome (n=14). First, brainstem and cerebellar volumes of each fetus were segmented and compared between cases and controls. In addition, transverse cerebellar diameters, vermian areas, and supratentorial brain and cerebrospinal fluid volumes were quantified and differences assessed between cases and controls. Volumetric differences were further analyzed according to types of cardiac defects and supratentorial brain volumes. Finally, volume ratios were created for each brain structure ([volume in fetus with congenital heart disease/respective volume in control fetus] × 100) and correlated to gestational age. RESULTS: Brainstem (cases, 2.1 cm3 vs controls, 2.4 cm3; P<.001) and cerebellar (cases, 3.2 cm3 vs controls, 3.4 cm3; P<.001) volumes were smaller in fetuses with congenital heart disease than in controls, whereas transverse cerebellar diameters (P=.681) and vermian areas (P=.947) did not differ between groups. Brainstem and cerebellar volumes differed between types of cardiac defects. Overall, the volume ratio of cases to controls was 80.8% for the brainstem, 90.5% for the cerebellum, and 90.1% for the supratentorial brain. Fetuses with tetralogy of Fallot and transposition of the great arteries were most severely affected by total brain volume reduction. Gestational age had no effect on volume ratios. CONCLUSION: The volume of the infratentorial brain, which contains structures considered crucial to brain function, is significantly smaller in fetuses with congenital heart disease than in controls from midgestation onward. These findings suggest that impaired growth of both supra- and infratentorial brain structures in fetuses with congenital heart disease occurs in the second trimester. Further research is needed to elucidate associations between fetal brain volumes and neurodevelopmental outcomes in congenital heart disease.
Assuntos
Cardiopatias Congênitas , Tetralogia de Fallot , Transposição dos Grandes Vasos , Encéfalo/patologia , Tronco Encefálico/diagnóstico por imagem , Estudos de Casos e Controles , Cerebelo/diagnóstico por imagem , Feminino , Feto/patologia , Idade Gestacional , Cardiopatias Congênitas/complicações , Humanos , Imageamento por Ressonância Magnética/métodos , Gravidez , Estudos Retrospectivos , Tetralogia de Fallot/complicações , Tetralogia de Fallot/patologiaRESUMO
AIM: To create a magnetic resonance imaging (MRI)-based scoring system specific to neonates born preterm with intraventricular haemorrhage (IVH), which could serve as a reliable prognostic indicator for later development and might allow for improved outcome prediction, individually-tailored parental counselling, and clinical decision-making. METHOD: This retrospective, two-center observational cohort study included 103 infants born preterm with IVH (61 males, 42 females; median gestational age 26wks 6d), born between 2000 and 2016. Term-equivalent MRI was evaluated using a novel scoring system consisting of 11 items. A total MRI score was calculated and correlated with neurodevelopment between 2 years and 3 years of age. Prediction models for outcome were defined. RESULTS: The proposed MRI scoring system showed high correlation and strong predictive ability with regard to later cognitive and motor outcome. The prediction models were translated into easy-to-use tables, allowing developmental risk assessment. INTERPRETATION: The proposed MRI-based scoring system was created especially for infants born preterm with IVH and enables a comprehensive assessment of important brain areas as well as potential additional abnormalities commonly associated with IVH. Thus, it better represents the severity of brain damage when compared with the conventional IVH classification. Our scoring system should provide clinicians with valuable information, to optimize parental counselling and clinical decision-making.
Assuntos
Doenças do Prematuro , Recém-Nascido Prematuro , Adulto , Hemorragia Cerebral/diagnóstico por imagem , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Doenças do Prematuro/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Estudos RetrospectivosRESUMO
Genetic, molecular, and physical forces together impact brain morphogenesis. The early impact of deficient midline crossing in agenesis of the Corpus Callosum (ACC) on prenatal human brain development and architecture is widely unknown. Here we analyze the changes of brain structure in 46 fetuses with ACC in vivo to identify their deviations from normal development. Cases of complete ACC show an increase in the thickness of the cerebral wall in the frontomedial regions and a reduction in the temporal, insular, medial occipital and lateral parietal regions, already present at midgestation. ACC is associated with a more symmetric configuration of the temporal lobes and increased frequency of atypical asymmetry patterns, indicating an early morphomechanic effect of callosal growth on human brain development affecting the thickness of the pallium along a ventro-dorsal gradient. Altered prenatal brain architecture in ACC emphasizes the importance of conformational forces introduced by emerging interhemispheric connectivity on the establishment of polygenically determined brain asymmetries.
Assuntos
Agenesia do Corpo Caloso/patologia , Encéfalo/embriologia , Feto/patologia , Lateralidade Funcional , Adulto , Agenesia do Corpo Caloso/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Corpo Caloso/embriologia , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/patologia , Feminino , Feto/diagnóstico por imagem , Idade Gestacional , Humanos , Imageamento por Ressonância Magnética , Gravidez , Diagnóstico Pré-Natal , Estudos Retrospectivos , Lobo Temporal/embriologia , Lobo Temporal/crescimento & desenvolvimento , Lobo Temporal/patologiaRESUMO
Knowledge about structural brain asymmetries of human fetuses with body lateralization defects-congenital diseases in which visceral organs are partially or completely incorrectly positioned-can improve our understanding of the developmental origins of hemispheric brain asymmetry. This study investigated structural brain asymmetry in 21 fetuses, which were diagnosed with different types of lateralization defects; 5 fetuses with ciliopathies and 26 age-matched healthy control cases, between 22 and 34 gestational weeks of age. For this purpose, a database of 4007 fetal magnetic resonance imagings (MRIs) was accessed and searched for the corresponding diagnoses. Specific temporal lobe brain asymmetry indices were quantified using in vivo, super-resolution-processed MR brain imaging data. Results revealed that the perisylvian fetal structural brain lateralization patterns and asymmetry indices did not differ between cases with lateralization defects, ciliopathies, and normal controls. Molecular mechanisms involved in the definition of the right/left body axis-including cilium-dependent lateralization processes-appear to occur independently from those involved in the early establishment of structural human brain asymmetries. Atypically inverted early structural brain asymmetries are similarly rare in individuals with lateralization defects and may have a complex, multifactorial, and neurodevelopmental background with currently unknown postnatal functional consequences.
Assuntos
Encéfalo/anormalidades , Encéfalo/embriologia , Feto/anormalidades , Lateralidade Funcional/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Cílios/fisiologia , Estudos de Coortes , Feminino , Feto/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Gravidez , Terminologia como AssuntoRESUMO
The purpose of the study was to investigate the interrelation of the signal intensities and thicknesses of the transient developmental zones in the cingulate and neocortical telencephalic wall, using T2-weighted 3 T-magnetic resonance imaging (MRI) and histological scans from the same brain hemisphere. The study encompassed 24 postmortem fetal brains (15-35 postconceptional weeks, PCW). The measurements were performed using Fiji and NDP.view2. We found that T2w MR signal-intensity curves show a specific regional and developmental stage profile already at 15 PCW. The MRI-histological correlation reveals that the subventricular-intermediate zone (SVZ-IZ) contributes the most to the regional differences in the MRI-profile and zone thicknesses, growing by a factor of 2.01 in the cingulate, and 1.78 in the neocortical wall. The interrelations of zone or wall thicknesses, obtained by both methods, disclose a different rate and extent of shrinkage per region (highest in neocortical subplate and SVZ-IZ) and stage (highest in the early second half of fetal development), distorting the zones' proportion in histological sections. This intrasubject, slice-matched, 3 T correlative MRI-histological study provides important information about regional development of the cortical wall, critical for the design of MRI criteria for prenatal brain monitoring and early detection of cortical or other brain pathologies in human fetuses.
Assuntos
Feto/embriologia , Lobo Límbico/embriologia , Neocórtex/embriologia , Telencéfalo/embriologia , Encéfalo/diagnóstico por imagem , Encéfalo/embriologia , Encéfalo/patologia , Feto/diagnóstico por imagem , Feto/patologia , Idade Gestacional , Humanos , Ventrículos Laterais/diagnóstico por imagem , Ventrículos Laterais/embriologia , Ventrículos Laterais/patologia , Lobo Límbico/diagnóstico por imagem , Lobo Límbico/patologia , Imageamento por Ressonância Magnética , Neocórtex/diagnóstico por imagem , Neocórtex/patologia , Tamanho do Órgão , Telencéfalo/diagnóstico por imagem , Telencéfalo/patologiaRESUMO
Background Fetal MRI-based differential diagnosis of congenital lung malformations is difficult because of the paucity of well-described imaging markers. Purpose To characterize the hyperintense bronchus sign (HBS) in in vivo fetal MRI of congenital lung malformation cases. Materials and Methods In this retrospective two-center study, fetal MRI scans obtained in fetuses with congenital lung malformations at US (January 2002 to September 2018) were reviewed for the HBS, a tubular or branching hyperintense structure within a lung lesion on T2-weighted images. The frequency of the HBS and respective gestational ages in weeks and days were analyzed. Areas under the curve (AUCs), 95% CIs, and P values of the HBS regarding airway obstruction, as found in histopathologic and postnatal CT findings as the reference standards, were calculated for different gestational ages. Results A total of 177 fetuses with congenital lung malformations (95 male fetuses) and 248 fetal MRI scans obtained at a median gestational age of 25.6 weeks (interquartile range, 8.9 weeks) were included. The HBS was found in 79% (53 of 67) of fetuses with bronchial atresia, 71% (39 of 55) with bronchopulmonary sequestration (BPS), 43% (three of seven) with hybrid lesion, 15% (six of 40) with congenital cystic adenomatoid malformation, and 13% (one of eight) with bronchogenic cyst at a median gestational age of 24.9 weeks (interquartile range, 9.7 weeks). HBS on MRI scans at any gestational age had an AUC of 0.76 (95% CI: 0.70, 0.83; P = .04) for the presence of isolated or BPS-associated airway obstruction at histopathologic analysis and postnatal CT. The AUC of HBS on fetal MRI scans obtained until gestational age of 26 weeks (AUC, 0.83; 95% CI: 0.75, 0.91; P < .001) was significantly higher (P = .045) than that for fetal MRI scans obtained after gestational age 26 weeks (AUC, 0.69; 95% CI: 0.57, 0.80; P = .004). Conclusion The hyperintense bronchus sign is a frequently detectable feature at fetal MRI and is associated with airway obstruction particularly before gestational age 26 weeks. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Dubinsky in this issue.
Assuntos
Obstrução das Vias Respiratórias/diagnóstico por imagem , Brônquios/diagnóstico por imagem , Brônquios/embriologia , Pulmão/diagnóstico por imagem , Pulmão/embriologia , Imageamento por Ressonância Magnética/métodos , Diagnóstico Pré-Natal/métodos , Cisto Broncogênico/congênito , Cisto Broncogênico/diagnóstico por imagem , Sequestro Broncopulmonar/diagnóstico por imagem , Malformação Adenomatoide Cística Congênita do Pulmão/diagnóstico por imagem , Diagnóstico Diferencial , Feminino , Idade Gestacional , Humanos , Masculino , Gravidez , Estudos Retrospectivos , Tomografia Computadorizada por Raios XRESUMO
BACKGROUND: Postmortem confirmation of prenatally diagnosed congenital heart disease after termination of pregnancy and evaluation of potential cardiac defects after spontaneous fetal or neonatal death are essential. Conventional autopsy rates are decreasing, and 1.5Tesla magnetic resonance imaging has demonstrated limited diagnostic accuracy for postmortem cardiovascular assessment. OBJECTIVE: This study aimed to evaluate the feasibility and image quality of cardiac 3Tesla postmortem magnetic resonance imaging and to assess its diagnostic accuracy in detecting fetal heart defects compared with conventional autopsy. Secondarily, the study aimed to explore whether clinical factors affect the quality of 3Tesla postmortem magnetic resonance imaging. STUDY DESIGN: A total of 222 consecutive fetuses between 12 and 41 weeks' gestation, who underwent 3Tesla postmortem magnetic resonance imaging and conventional autopsy after spontaneous death or termination of pregnancy for fetal malformations, were included. First, 3Tesla postmortem magnetic resonance imaging of each fetus was rated as diagnostic or nondiagnostic for fetal cardiac assessment by 2 independent raters. The image quality of individual cardiac structures was then further evaluated by visual grading analysis. Finally, the presence or absence of a congenital heart defect was assessed by 2 radiologists and compared with autopsy results. RESULTS: Overall, 87.8% of 3Tesla postmortem magnetic resonance imaging examinations were rated as diagnostic for the fetal heart. Diagnostic imaging rates of individual cardiac structures at 3Tesla postmortem magnetic resonance imaging ranged from 85.1% (atrioventricular valves) to 94.6% (pericardium), with an interrater agreement of 0.82 (0.78-0.86). Diagnostic imaging of the fetal aortic arch and the systemic veins at 3Tesla postmortem magnetic resonance imaging was possible from 12+5 weeks' gestation onward in 90.1% and 92.3% of cases, respectively. A total of 55 fetuses (24.8%) had at least 1 cardiac anomaly according to autopsy, 164 (73.9%) had a normal heart, and in 3 fetuses (1.4%), autopsy was nondiagnostic for the heart. Considering all examinations rated as diagnostic, 3Tesla postmortem magnetic resonance imaging provided high diagnostic accuracy for the detection of fetal congenital heart defects with a sensitivity of 87.8%, a specificity of 97.9%, and concordance with autopsy of 95.3%. 3Tesla postmortem magnetic resonance imaging was less accurate in young fetuses (<20 weeks compared with ≥20 weeks; P<.001), in fetuses with low birthweight (≤100 g compared with >100 g; P<.001), in cases after spontaneous fetal death (compared with other modes of death; P=.012), in cases with increasing latency between death and 3Tesla postmortem magnetic resonance imaging (P<.001), and in cases in which there was a high degree of maceration (maceration score of 3 compared with a score from 0 to 2; P=.004). CONCLUSION: Diagnostic 3Tesla postmortem magnetic resonance imaging assessment of the fetal heart is feasible in most fetuses from 12 weeks' gestation onward. In diagnostic images, sensitivity and, particularly, specificity in the detection of congenital heart disease are high compared with conventional autopsy. Owing to its high diagnostic accuracy, we suggest that 3Tesla postmortem magnetic resonance imaging may serve as a suitable imaging modality with which to direct a targeted conventional autopsy when pathology resources are limited or to provide a virtual autopsy when full autopsy is declined by the parents.
Assuntos
Autopsia/métodos , Coração Fetal/diagnóstico por imagem , Feto/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Feminino , Morte Fetal , Coração Fetal/fisiologia , Cardiopatias Congênitas/patologia , Humanos , Recém-Nascido , Masculino , Morte Perinatal , Estudos Retrospectivos , Sensibilidade e Especificidade , Ultrassonografia Pré-NatalRESUMO
The specific role of the corpus callosum (CC) in language network organization remains unclear, two contrasting models have been proposed: inhibition of homotopic areas allowing for independent functioning of the hemispheres versus integration of information from both hemispheres. This study aimed to add to this discussion with the first investigation of language network connectivity in combination with CC volume measures. In 38 healthy children aged 6-12, we performed task-based functional magnetic resonance imaging to measure language network connectivity, used structural magnetic resonance imaging to quantify CC subsection volumes, and administered various language tests to examine language abilities. We found an increase in left intrahemispheric and bilateral language network connectivity and a decrease in right intrahemispheric connectivity associated with larger volumes of the posterior, mid-posterior, and central subsections of the CC. Consistent with that, larger volumes of the posterior parts of the CC were significantly associated with better verbal fluency and vocabulary, the anterior CC volume was positively correlated with verbal span. Thus, children with larger volumes of CC subsections showed increased interhemispheric language network connectivity and were better in different language domains. This study presents the first evidence that the CC is directly linked to language network connectivity and underlines the excitatory role of the CC in the integration of information from both hemispheres.
Assuntos
Corpo Caloso , Idioma , Criança , Humanos , Imageamento por Ressonância Magnética , Vias NeuraisRESUMO
The study of the onset and ontogeny of human behaviour has made it clear that a multitude of fetal movement patterns are spontaneously generated, and that there is a close association between activity and the development of peripheral and central structures. The embryo starts moving by 7.5 week's gestation; 2 to 3 weeks later, a number of movement patterns including general movements, isolated limb and head movements, hiccup, and breathing movements, appear. Some movements (e.g. yawning, smiling, 'pointing'; we show these in eight videos in this review) precede life-long patterns; others have intrauterine functions, such as sucking/swallowing for amniotic fluid regulation, breathing movements for lung development, or eye movements for retinal cell diversity. In cases of developmental brain dysfunction, fetal general movements alter their sequence and gestalt, which suggests a dysfunction of the developing nervous system. The scarcity of longitudinal studies calls for further comprehensive research on the predictive value of prenatal functional deviations. What this paper adds Motor output can occur in the absence of sensory input. Structural development is activity-dependent. Fetal general movements are among the first movement patterns to occur. Pregnancy-related and maternal factors impact quantity and modulation of fetal general movements. Prenatal general movement assessment has not yet brought the expected breakthrough.
Assuntos
Desenvolvimento Fetal , Movimento Fetal/fisiologia , Atividade Motora/fisiologia , Feminino , Humanos , GravidezRESUMO
The subplate (SP) is a transient structure of the human fetal brain that becomes the most prominent layer of the developing pallium during the late second trimester. It is important in the formation of thalamocortical and cortico-cortical connections. The SP is vulnerable in perinatal brain injury and may play a role in complex neurodevelopmental disorders, such as schizophrenia and autism. Nine postmortem fetal human brains (19-24 GW) were imaged on a 3 Tesla MR scanner and the T2-w images in the frontal and temporal lobes were compared, in each case, with the histological slices of the same brain. The brains were confirmed to be without any brain pathology. The purpose of this study was to demonstrate that the superficial SP (sSP) and deep SP (dSP) can be discriminated on postmortem MR images. More specifically, we aimed to clarify that the observable, thin, hyperintense layer below the cortical plate in the upper SP portion on T2-weighted MR images has an anatomical correspondence to the histologically established sSP. Therefore, the distinction between the sSP and dSP layers, using clinically available MR imaging methodology, is possible in postmortem MRI and can help in the imaging interpretation of the fetal cerebral layers.