Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Cell Biol ; 8(2): 170-9, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16429131

RESUMO

The Vpr protein of HIV-1 functions as a vital accessory gene by regulating various cellular functions, including cell differentiation, apoptosis, nuclear factor of kappaB (NF-kappaB) suppression and cell-cycle arrest of the host cell. Several reports have indicated that Vpr complexes with the glucocorticoid receptor (GR), but it remains unclear whether the GR pathway is required for Vpr to function. Here, we report that Vpr uses the GR pathway as a recruitment vehicle for the NF-kappaB co-activating protein, poly(ADP-ribose) polymerase-1 (PARP-1). The GR interaction with Vpr is both necessary and sufficient to facilitate this interaction by potentiating the formation of a Vpr-GR-PARP-1 complex. The recruitment of PARP-1 by the Vpr-GR complex prevents its nuclear localization, which is necessary for Vpr to suppress NF-kappaB. The association of GR with PARP-1 is not observed with steroid (glucocorticoid) treatment, indicating that the GR association with PARP-1 is a gain of function that is solely attributed to HIV-1 Vpr. These data provide important insights into Vpr biology and its role in HIV pathogenesis.


Assuntos
Núcleo Celular/metabolismo , Produtos do Gene vpr/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo , Receptores de Glucocorticoides/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Antígenos de Bactérias/farmacologia , Linhagem Celular , Chlorocebus aethiops , Enterotoxinas/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Produtos do Gene vpr/metabolismo , Produtos do Gene vpr/farmacologia , Infecções por HIV/metabolismo , Infecções por HIV/fisiopatologia , Células HeLa , Humanos , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Interleucina-1/sangue , Interleucina-12/sangue , Células Jurkat , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Mifepristona/farmacologia , Mutação/genética , Inibidor de NF-kappaB alfa , NF-kappa B/genética , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica/efeitos dos fármacos , Mapeamento de Interação de Proteínas , RNA Interferente Pequeno/genética , Receptores de Glucocorticoides/genética , Fator de Transcrição RelA/metabolismo , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Células U937 , Produtos do Gene vpr do Vírus da Imunodeficiência Humana
2.
Brain Res Mol Brain Res ; 108(1-2): 94-101, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12480182

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA or Ecstasy) is a widely abused drug. In brains of mice exposed to MDMA, we recently detected altered expression of several cDNAs and genes by using the differential display polymerase chain reaction (PCR) method. Expression of one such cDNA, which exhibited 98% sequence homology with the synaptic vesicle protein synaptotagmin IV, decreased 2 h after MDMA treatment. Herein, the effect of MDMA on expression of both synaptotagmin I and IV was studied in detail, since the two proteins are functionally interrelated. PCR analyses (semi-quantitative and real-time) confirmed that upon treatment with MDMA, expression of synaptotagmin IV decreased both in the midbrain and frontal cortex of mice. Decreases in the protein levels of synaptotagmin IV were confirmed by Western immunoblotting with anti-synaptotagmin IV antibodies. In contrast, the same exposure to MDMA increased expression of synaptotagmin I in the midbrain, a region rich in serotonergic neurons, but not in the frontal cortex. This differential expression was confirmed at the protein level with anti-synaptotagmin I antibodies. MDMA did not induce down- or up-regulation of synaptotagmin IV and I, respectively, in serotonin transporter knockout mice (-/-) that are not sensitive to MDMA. Therefore, psychoactive drugs, such as MDMA, appear to modulate expression of synaptic vesicle proteins, and possibly vesicle trafficking, in the brain.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Serotoninérgicos/farmacologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação para Baixo/fisiologia , Alucinógenos , Humanos , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina , Sinaptotagmina I , Sinaptotagminas
3.
Biochemistry ; 44(29): 9924-35, 2005 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-16026165

RESUMO

Peripheral-type benzodiazepine receptors (PBR) are constituted by three protein components, the isoquinoline binding protein (IBP), the voltage-dependent anion channel (VDAC), and the adenine nucleotide transporter (ANT). Recently, we found that high levels of PBR ligand binding in glioma cell lines correlate with in vitro tumorigenicity. To study whether enhanced PBR expression is causative or in response to cancer, we genetically modified C6 glioma cells. Antisense knockdown of the IBP resulted in more than 50% reductions in PBR ligand binding both in the mitochondrial and whole cell fractions, accompanied by similar reductions in IBP levels in these respective fractions. The IBP knockdown was accompanied by a 25% increase in cell number in confluent cultures. This correlated with an 8-fold increase in in vitro tumorigenicity, as assessed by anchorage independent growth. Cell cycle analysis indicated that knockdown of the IBP resulted in a 60% reduction in the number of cells in the pre-G1 apoptosis phase. This paralleled the reduction seen in apoptosis and cell death shown by DNA fragmentation and Trypan blue assays, respectively. Furthermore, knockdown of the IBP appeared to prevent induction of apoptosis by the antineoplastic agent, erucylphosphocholine. In addition, IBP knockdown prevented processing of the caspase 3 component of the apoptosis cascade by the erucylphosphocholine congener, erucylphospho-N,N,N-trimethylammonium. In conclusion, our results suggest that enhanced IBP expression, including enhanced PBR ligand binding, such as occurring in untreated C6 glioma cells, may provide a mechanism to increase apoptotic rates of cancer cells.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/genética , Receptores de GABA-A/química , Receptores de GABA-A/genética , Animais , Apoptose/genética , Western Blotting , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/biossíntese , Caspase 3 , Caspases/metabolismo , Contagem de Células , Linhagem Celular Tumoral , Células Clonais , DNA Antissenso/química , Antagonistas de Receptores de GABA-A , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Processamento de Proteína Pós-Traducional , Ratos , Receptores de GABA-A/biossíntese , Transfecção , Azul Tripano
4.
Mol Ther ; 12(5): 910-21, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16006193

RESUMO

The HIV-1 accessory protein Vpr exhibits many interesting features related to macrophage and T cell biology. As a viral protein or as a soluble molecule it can suppress immune cell activation and cytokine production in vitro in part by targeted inhibition of NF-kappaB. In this regard we sought to test its effects in vivo on an NF-kappaB-dependent immune pathway. We examined the activity of Vpr in a lethal toxin-mediated challenge model in mice. Intravenous delivery of Vpr was sufficient to protect mice from lethal challenge with staphylococcal endotoxin B (SEB). Furthermore, Vpr protected host CD4+ T cells from in vivo depletion likely by preventing induction of AICD of SEB-exposed cells in a post-toxin-binding fashion. Understanding the biology of Vpr's activities in this model may allow for new insight into potential mechanisms of hyperinflammatory disease and into Vpr pathobiology in the context of HIV infection.


Assuntos
Produtos do Gene vpr/imunologia , HIV-1/imunologia , NF-kappa B/imunologia , Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Endotoxinas/farmacologia , Feminino , Homeostase/imunologia , Técnicas In Vitro , Fígado/imunologia , Fígado/patologia , Ativação Linfocitária , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos BALB C , Staphylococcus , Produtos do Gene vpr do Vírus da Imunodeficiência Humana
5.
Blood ; 106(6): 2059-68, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15928037

RESUMO

The human immunodeficiency virus (HIV) has been reported to target noninfected CD4 and CD8 cells for destruction. This effect is manifested in part through up-regulation of the death receptor Fas ligand (FasL) by HIV-1 negative factor (Nef), leading to bystander damage. However, the signal transduction and transcriptional regulation of this process remains elusive. Here, we provide evidence that p38 mitogen-activated protein kinase (MAPK) is required for this process. Loss-of-function experiments through dominant-negative p38 isoform, p38 siRNA, and chemical inhibitors of p38 activation suggest that p38 is necessary for Nef-induced activator protein-1 (AP-1) activation, as inhibition leads to an attenuation of AP-1-dependent transcription. Furthermore, mutagenesis of the FasL promoter reveals that its AP-1 enhancer element is required for Nef-mediated transcriptional activation. Therefore, a linear pathway for Nef-induced FasL expression that encompasses p38 and AP-1 has been elucidated. Furthermore, chemical inhibition of the p38 pathway attenuates HIV-1-mediated bystander killing of CD8 cells in vitro.


Assuntos
Efeito Espectador , Linfócitos T CD8-Positivos/patologia , Produtos do Gene nef/fisiologia , HIV-1/patogenicidade , Glicoproteínas de Membrana/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linfócitos T CD8-Positivos/virologia , Morte Celular , Células Cultivadas , Elementos Facilitadores Genéticos , Proteína Ligante Fas , Regulação da Expressão Gênica , Humanos , Fator de Transcrição AP-1 , Ativação Transcricional , Produtos do Gene nef do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa