Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
PLoS Genet ; 20(8): e1011360, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39172766

RESUMO

Secondary contact between closely related taxa represents a "moment of truth" for speciation-an opportunity to test the efficacy of reproductive isolation that evolved in allopatry and to identify the genetic, behavioral, and/or ecological barriers that separate species in sympatry. Sex chromosomes are known to rapidly accumulate differences between species, an effect that may be exacerbated for neo-sex chromosomes that are transitioning from autosomal to sex-specific inheritance. Here we report that, in the Solomon Islands, two closely related bird species in the honeyeater family-Myzomela cardinalis and Myzomela tristrami-carry neo-sex chromosomes and have come into recent secondary contact after ~1.1 my of geographic isolation. Hybrids of the two species were first observed in sympatry ~100 years ago. To determine the genetic consequences of hybridization, we use population genomic analyses of individuals sampled in allopatry and in sympatry to characterize gene flow in the contact zone. Using genome-wide estimates of diversity, differentiation, and divergence, we find that the degree and direction of introgression varies dramatically across the genome. For sympatric birds, autosomal introgression is bidirectional, with phenotypic hybrids and phenotypic parentals of both species showing admixed ancestry. In other regions of the genome, however, the story is different. While introgression on the Z/neo-Z-linked sequence is limited, introgression of W/neo-W regions and mitochondrial sequence (mtDNA) is highly asymmetric, moving only from the invading M. cardinalis to the resident M. tristrami. The recent hybridization between these species has thus enabled gene flow in some genomic regions but the interaction of admixture, asymmetric mate choice, and/or natural selection has led to the variation in the amount and direction of gene flow at sex-linked regions of the genome.


Assuntos
Fluxo Gênico , Introgressão Genética , Hibridização Genética , Isolamento Reprodutivo , Cromossomos Sexuais , Animais , Cromossomos Sexuais/genética , Especiação Genética , Simpatria , Masculino , Feminino , Aves/genética , Melanesia , Genética Populacional , Genoma/genética
2.
PLoS Biol ; 14(7): e1002499, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27404402

RESUMO

The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower-approximately 3-fold or more-for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution.


Assuntos
Drosophila melanogaster/genética , Transcrição Gênica , Inativação do Cromossomo X , Animais , Sequência de Bases , Sequência Conservada , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Feminino , Genes Essenciais , Genes Ligados ao Cromossomo X , Células Germinativas/metabolismo , Masculino , Regiões Promotoras Genéticas , Testículo/metabolismo , Cromossomo X
3.
Nucleic Acids Res ; 45(6): 2986-2993, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28199687

RESUMO

Chromosomal or segmental aneuploidy-the gain or loss of whole or partial chromosomes-is typically deleterious for organisms, a hallmark of cancers, and only occasionally adaptive. To understand the cellular and organismal consequences of aneuploidy, it is important to determine how altered gene doses impact gene expression. Previous studies show that, for some Drosophila cell lines but not others, the dose effect of segmental aneuploidy can be moderately compensated at the mRNA level - aneuploid gene expression is shifted towards wild-type levels. Here, by analyzing genome-wide translation efficiency estimated with ribosome footprint data from the aneuploid Drosophila S2 cell line, we report that the dose effect of aneuploidy can be further compensated at the translational level. Intriguingly, we find no comparable translational compensation in the aneuploid Kc167 cell line. Comparing the properties of aneuploid genes from the two cell lines suggests that selective constraint on gene expression, but neither sequence features nor functions, may partly explain why the two cell lines differ in translational compensation. Our results, together with previous observations that compensation at the mRNA level also varies among Drosophila cell lines and yeast strains, suggest that dosage compensation of aneuploidy is not general but contingent on genotypic and/or developmental context.


Assuntos
Aneuploidia , Drosophila melanogaster/genética , Dosagem de Genes , Biossíntese de Proteínas , Animais , Linhagem Celular , Expressão Gênica , Genes de Insetos
4.
Mol Ecol ; 27(19): 3822-3830, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29940087

RESUMO

The ubiquity of the "two rules of speciation"-Haldane's rule and the large X-effect-implies a general, special role for sex chromosomes in the evolution of intrinsic postzygotic reproductive isolation. The recent proliferation of genome-scale analyses has revealed two further general observations: (a) complex speciation involving some form of gene flow is not uncommon, and (b) sex chromosomes in male- and in female-heterogametic taxa tend to show elevated differentiation relative to autosomes. Together, these observations are consistent with speciation histories in which population genetic differentiation at autosomal loci is reduced by gene flow while natural selection against hybrid incompatibilities renders sex chromosomes relatively refractory to gene flow. Here, I summarize multilocus population genetic and population genomic evidence for greater differentiation on the X (or Z) vs. the autosomes and consider the possible causes. I review common population genetic circumstances involving no selection and/or no interspecific gene flow that are nevertheless expected to elevate differentiation on sex chromosomes relative to autosomes. I then review theory for why large X-effects exist for hybrid incompatibilities and, more generally, for loci mediating local adaptation. The observed levels of sex chromosome vs. autosomal differentiation, in many cases, appear consistent with simple explanations requiring neither large X-effects nor gene flow. Discerning signatures of large X-effects during complex speciation will therefore require analyses that go beyond chromosome-scale summaries of population genetic differentiation, explicitly test for differential introgression, and/or integrate experimental genetic data.


Assuntos
Fluxo Gênico , Especiação Genética , Genética Populacional , Isolamento Reprodutivo , Cromossomos Sexuais/genética , Animais , Feminino , Masculino , Modelos Genéticos , Plantas/genética
5.
Mol Biol Evol ; 33(2): 413-28, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26486873

RESUMO

In Drosophila, X-linked and autosomal genes achieve comparable expression at the mRNA level. Whether comparable X-autosome gene expression is realized at the translational and, ultimately, the protein levels is, however, unknown. Previous studies suggest the possibility of higher translation rates for X-linked genes owing to stronger usage of preferred codons. In this study, we use public ribosome profiling data from Drosophila melanogaster to infer translation rates on the X chromosome versus the autosomes. We find that X-linked genes have consistently lower ribosome densities than autosomal genes in S2 cells, early embryos, eggs, and mature oocytes. Surprisingly, the lower ribosome densities of X-linked genes are not consistent with faster translation elongation but instead imply slower translation initiation. In particular, X-linked genes have sequence features known to slow translation initiation such as stronger mRNA structure near start codons and longer 5'-UTRs. Comparison to outgroup species suggests that stronger mRNA structure is an evolved feature of Drosophila X chromosomes. Finally, we find that the magnitude of the X-autosome difference in ribosome densities is smaller for genes encoding members of protein complexes, suggesting that stoichiometry constrains the evolution of translation rates. In sum, our analyses suggest that Drosophila X-linked genes have evolved lower translation rates than autosomal genes despite stronger usage of preferred codons.


Assuntos
Cromossomos de Insetos , Drosophila/genética , Genes de Insetos , Genes Ligados ao Cromossomo X , Biossíntese de Proteínas , Cromossomo X , Animais , Códon , Drosophila/metabolismo , Evolução Molecular , Conformação de Ácido Nucleico , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
6.
Am Nat ; 187(2): 249-61, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26807751

RESUMO

Under allopatric speciation, geographic barriers eliminate gene flow between eventual species at all loci in the genome simultaneously. There is increasing evidence, however, that speciation can be complex, with some loci experiencing gene flow during speciation or during bouts of secondary contact. In taxa with heteromorphic sex chromosomes-birds, butterflies, mammals, and Drosophila-the X (or Z) chromosome generally shows reduced levels of gene flow compared to autosomes. To investigate why, we develop population genetic models of secondary contact and gene flow at a neutral locus that is genetically linked to selected loci involved in hybrid incompatibilities and/or local adaptation. Using models that assume weak migration and strong selection, we compare gene flow at X-linked versus autosomal neutral loci as a function of linkage, dominance, sex-specific selection, and sex-specific recombination. For most cases, gene flow at neutral loci on the X is reduced relative to autosomes, as the greater efficacy of hemizygous selection in XY hybrids reduces the opportunity for neutral migrant alleles to escape their genetically linked, locally disfavored alleles via recombination. There are some circumstances, however, involving sex-limited selection and sex-limited recombination that allow neutral loci on the X to introgress more readily than those on autosomes.


Assuntos
Adaptação Biológica , Fluxo Gênico , Hibridização Genética , Genoma , Modelos Genéticos
7.
PLoS Biol ; 11(2): e1001498, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468596

RESUMO

The modern evolutionary synthesis codified the idea that species exist as distinct entities because intrinsic reproductive barriers prevent them from merging together. Understanding the origin of species therefore requires understanding the evolution and genetics of reproductive barriers between species. In most cases, speciation is an accident that happens as different populations adapt to different environments and, incidentally, come to differ in ways that render them reproductively incompatible. As with other reproductive barriers, the evolution and genetics of interspecific hybrid sterility and lethality were once also thought to evolve as pleiotripic side effects of adaptation. Recent work on the molecular genetics of speciation has raised an altogether different possibility-the genes that cause hybrid sterility and lethality often come to differ between species not because of adaptation to the external ecological environment but because of internal evolutionary arms races between selfish genetic elements and the genes of the host genome. Arguably one of the best examples supporting a role of ecological adaptation comes from a population of yellow monkey flowers, Mimulus guttatus, in Copperopolis, California, which recently evolved tolerance to soil contaminants from copper mines and simultaneously, as an incidental by-product, hybrid lethality in crosses with some off-mine populations. However, in new work, Wright and colleagues show that hybrid lethality is not a pleiotropic consequence of copper tolerance. Rather, the genetic factor causing hybrid lethality is tightly linked to copper tolerance and spread to fixation in Copperopolis by genetic hitchhiking.


Assuntos
Adaptação Fisiológica/fisiologia , Mimulus/fisiologia , Adaptação Fisiológica/genética , Evolução Biológica , Cruzamentos Genéticos , Genética Populacional , Hibridização Genética , Mimulus/genética
8.
Nat Rev Genet ; 11(3): 175-80, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20051985

RESUMO

All plant and animal species arise by speciation - the evolutionary splitting of one species into two reproductively incompatible species. But until recently our understanding of the molecular genetic details of speciation was slow in coming and largely limited to Drosophila species. Here, I review progress in determining the molecular identities and evolutionary histories of several new 'speciation genes' that cause hybrid dysfunction between species of yeast, flies, mice and plants. The new work suggests that, surprisingly, the first steps in the evolution of hybrid dysfunction are not necessarily adaptive.


Assuntos
Evolução Molecular , Especiação Genética , Animais , Arabidopsis/genética , Drosophila/genética , Hibridização Genética , Camundongos , Modelos Genéticos , Mutação , Saccharomyces/genética
9.
Genome Res ; 22(8): 1499-511, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22534282

RESUMO

The three species of the Drosophila simulans clade--the cosmopolitan species, D. simulans, and the two island endemic species, D. mauritiana and D. sechellia--are important models in speciation genetics, but some details of their phylogenetic and speciation history remain unresolved. The order and timing of speciation are disputed, and the existence, magnitude, and timing of gene flow among the three species remain unclear. Here we report on the analysis of a whole-genome four-species sequence alignment that includes all three D. simulans clade species as well as the D. melanogaster reference sequence. The alignment comprises novel, paired short-read sequence data from a single highly inbred line each from D. simulans, D. mauritiana, and D. sechellia. We are unable to reject a species phylogeny with a basal polytomy; the estimated age of the polytomy is 242,000 yr before the present. However, we also find that up to 4.6% of autosomal and 2.2% of X-linked regions have evolutionary histories consistent with recent gene flow between the mainland species (D. simulans) and the two island endemic species (D. mauritiana and D. sechellia). Our findings thus show that gene flow has occurred throughout the genomes of the D. simulans clade species despite considerable geographic, ecological, and intrinsic reproductive isolation. Last, our analysis of lineage-specific changes confirms that the D. sechellia genome has experienced a significant excess of slightly deleterious changes and a dearth of presumed favorable changes. The relatively reduced efficacy of natural selection in D. sechellia is consistent with its derived, persistently reduced historical effective population size.


Assuntos
Drosophila/classificação , Especiação Genética , Genoma de Inseto , Animais , Sequência de Bases , Cromossomos de Insetos/genética , Drosophila/genética , Evolução Molecular , Fluxo Gênico , Haplótipos , Filogenia , Densidade Demográfica , Isolamento Reprodutivo , Seleção Genética , Alinhamento de Sequência , Análise de Sequência de DNA
10.
PLoS Biol ; 9(8): e1001126, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21857805

RESUMO

The evolution of heteromorphic sex chromosomes (e.g., XY in males or ZW in females) has repeatedly elicited the evolution of two kinds of chromosome-specific regulation: dosage compensation--the equalization of X chromosome gene expression in males and females--and meiotic sex chromosome inactivation (MSCI)--the transcriptional silencing and heterochromatinization of the X during meiosis in the male (or Z in the female) germline. How the X chromosome is regulated in the Drosophila melanogaster male germline is unclear. Here we report three new findings concerning gene expression from the X in Drosophila testes. First, X chromosome-wide dosage compensation appears to be absent from most of the Drosophila male germline. Second, microarray analysis provides no evidence for X chromosome-specific inactivation during meiosis. Third, we confirm the previous discovery that the expression of transgene reporters driven by autosomal spermatogenesis-specific promoters is strongly reduced when inserted on the X chromosome versus the autosomes; but we show that this chromosomal difference in expression is established in premeiotic cells and persists in meiotic cells. The magnitude of the X-autosome difference in transgene expression cannot be explained by the absence of dosage compensation, suggesting that a previously unrecognized mechanism limits expression from the X during spermatogenesis in Drosophila. These findings help to resolve several previously conflicting reports and have implications for patterns of genome evolution and speciation in Drosophila.


Assuntos
Mecanismo Genético de Compensação de Dose/genética , Drosophila/genética , Meiose/genética , Cromossomos Sexuais/genética , Animais , Feminino , Células Germinativas/metabolismo , Masculino , Espermatogênese/genética , Testículo/metabolismo , Inativação do Cromossomo X/genética
12.
Genet Res (Camb) ; 94(1): 1-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22353244

RESUMO

Intrinsic postzygotic reproductive isolation is thought to result from the substitution of multiple harmless or beneficial genetic differences between species that are incidentally deleterious when combined in species hybrids, causing hybrid sterility or inviability. Genetic variability for hybrid sterility or inviability phenotypes is, however, rarely assessed in natural populations. Here, we assess variation for Drosophila simulans-encoded maternal factor(s) that cause lethality in D. simulans-Drosophila melanogaster F(1) hybrid females. First, we survey genetic variability in the strength of D. simulans-mediated maternal effect hybrid lethality among 37 geographic and laboratory isolates. We find abundant variability in the strength of maternal effect hybrid lethality, ranging from complete lethality to none. Second, we assess maternal effect hybrid lethality for a subset of wild isolates made heterozygous with two so-called hybrid rescue strains. The results suggest that the D. simulans maternal effect hybrid lethality involves a diversity of alleles and/or multiple loci.


Assuntos
Drosophila/genética , Genes de Insetos , Variação Genética , Isolamento Reprodutivo , Alelos , Animais , Cruzamentos Genéticos , Drosophila melanogaster/genética , Feminino , Genes Letais , Heterozigoto , Homozigoto , Hibridização Genética , Masculino , Especificidade da Espécie
13.
PLoS Genet ; 5(5): e1000463, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19412335

RESUMO

Segregation Distorter (SD) is a selfish, coadapted gene complex on chromosome 2 of Drosophila melanogaster that strongly distorts Mendelian transmission; heterozygous SD/SD(+) males sire almost exclusively SD-bearing progeny. Fifty years of genetic, molecular, and theory work have made SD one of the best-characterized meiotic drive systems, but surprisingly the details of its evolutionary origins and population dynamics remain unclear. Earlier analyses suggested that the SD system arose recently in the Mediterranean basin and then spread to a low, stable equilibrium frequency (1-5%) in most natural populations worldwide. In this report, we show, first, that SD chromosomes occur in populations in sub-Saharan Africa, the ancestral range of D. melanogaster, at a similarly low frequency (approximately 2%), providing evidence for the robustness of its equilibrium frequency but raising doubts about the Mediterranean-origins hypothesis. Second, our genetic analyses reveal two kinds of SD chromosomes in Africa: inversion-free SD chromosomes with little or no transmission advantage; and an African-endemic inversion-bearing SD chromosome, SD-Mal, with a perfect transmission advantage. Third, our population genetic analyses show that SD-Mal chromosomes swept across the African continent very recently, causing linkage disequilibrium and an absence of variability over 39% of the length of the second chromosome. Thus, despite a seemingly stable equilibrium frequency, SD chromosomes continue to evolve, to compete with one another, or evade suppressors in the genome.


Assuntos
Segregação de Cromossomos , Cromossomos/genética , Drosophila melanogaster/genética , Seleção Genética , Animais , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Evolução Molecular , Feminino , Fertilidade , Variação Genética , Masculino
14.
Elife ; 112022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486424

RESUMO

Meiotic drive supergenes are complexes of alleles at linked loci that together subvert Mendelian segregation resulting in preferential transmission. In males, the most common mechanism of drive involves the disruption of sperm bearing one of a pair of alternative alleles. While at least two loci are important for male drive-the driver and the target-linked modifiers can enhance drive, creating selection pressure to suppress recombination. In this work, we investigate the evolution and genomic consequences of an autosomal, multilocus, male meiotic drive system, Segregation Distorter (SD) in the fruit fly, Drosophila melanogaster. In African populations, the predominant SD chromosome variant, SD-Mal, is characterized by two overlapping, paracentric inversions on chromosome arm 2R and nearly perfect (~100%) transmission. We study the SD-Mal system in detail, exploring its components, chromosomal structure, and evolutionary history. Our findings reveal a recent chromosome-scale selective sweep mediated by strong epistatic selection for haplotypes carrying Sd, the main driving allele, and one or more factors within the double inversion. While most SD-Mal chromosomes are homozygous lethal, SD-Mal haplotypes can recombine with other, complementing haplotypes via crossing over, and with wildtype chromosomes via gene conversion. SD-Mal chromosomes have nevertheless accumulated lethal mutations, excess non-synonymous mutations, and excess transposable element insertions. Therefore, SD-Mal haplotypes evolve as a small, semi-isolated subpopulation with a history of strong selection. These results may explain the evolutionary turnover of SD haplotypes in different populations around the world and have implications for supergene evolution broadly.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Inversão Cromossômica , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Carga Genética , Masculino , Meiose , Recombinação Genética , Seleção Genética
15.
Trends Genet ; 24(7): 336-43, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18514967

RESUMO

Two empirical rules suggest that sex chromosomes play a special role in speciation. The first is Haldane's rule - the preferential sterility and inviability of species hybrids of the heterogametic (XY) sex. The second is the disproportionately large effect of the X chromosome in genetic analyses of hybrid sterility. Whereas the causes of Haldane's rule are well established, the causes of the 'large X-effect' have remained controversial. New genetic analyses in Drosophila confirm that the X is a hotspot for hybrid male sterility factors, providing a proximate explanation for the large X-effect. Several other new findings -- on faster X evolution, X chromosome meiotic drive and the regulation of the X chromosome in the male-germline -- provide plausible evolutionary explanations for the large X-effect.


Assuntos
Drosophila/genética , Especiação Genética , Cromossomos Sexuais/genética , Animais , Evolução Molecular , Infertilidade , Masculino , Cromossomo X/genética
16.
Front Genet ; 12: 669045, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249091

RESUMO

The three fruitfly species of the Drosophila simulans clade- D. simulans, D. mauritiana, and D. sechellia- have served as important models in speciation genetics for over 40 years. These species are reproductively isolated by geography, ecology, sexual signals, postmating-prezygotic interactions, and postzygotic genetic incompatibilities. All pairwise crosses between these species conform to Haldane's rule, producing fertile F1 hybrid females and sterile F1 hybrid males. The close phylogenetic proximity of the D. simulans clade species to the model organism, D. melanogaster, has empowered genetic analyses of their species differences, including reproductive incompatibilities. But perhaps no phenotype has been subject to more continuous and intensive genetic scrutiny than hybrid male sterility. Here we review the history, progress, and current state of our understanding of hybrid male sterility among the D. simulans clade species. Our aim is to integrate the available information from experimental and population genetics analyses bearing on the causes and consequences of hybrid male sterility. We highlight numerous conclusions that have emerged as well as issues that remain unresolved. We focus on the special role of sex chromosomes, the fine-scale genetic architecture of hybrid male sterility, and the history of gene flow between species. The biggest surprises to emerge from this work are that (i) genetic conflicts may be an important general force in the evolution of hybrid incompatibility, (ii) hybrid male sterility is polygenic with contributions of complex epistasis, and (iii) speciation, even among these geographically allopatric taxa, has involved the interplay of gene flow, negative selection, and positive selection. These three conclusions are marked departures from the classical views of speciation that emerged from the modern evolutionary synthesis.

17.
Nat Ecol Evol ; 5(12): 1604-1612, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34489561

RESUMO

Sex chromosomes are susceptible to the evolution of selfish meiotic drive elements that bias transmission and distort progeny sex ratios. Conflict between such sex-ratio drivers and the rest of the genome can trigger evolutionary arms races resulting in genetically suppressed 'cryptic' drive systems. The Winters cryptic sex-ratio drive system of Drosophila simulans comprises a driver, Distorter on the X (Dox) and an autosomal suppressor, Not much yang, a retroduplicate of Dox that suppresses via production of endogenous small interfering RNAs (esiRNAs). Here we report that over 22 Dox-like (Dxl) sequences originated, amplified and diversified over the ~250,000-year history of the three closely related species, D. simulans, D. mauritiana and D. sechellia. The Dxl sequences encode a rapidly evolving family of protamines. Dxl copy numbers amplified by ectopic exchange among euchromatic islands of satellite DNAs on the X chromosome and separately spawned four esiRNA-producing suppressors on the autosomes. Our results reveal the genomic consequences of evolutionary arms races and highlight complex interactions among different classes of selfish DNAs.


Assuntos
Drosophila , Razão de Masculinidade , Animais , DNA Satélite , Drosophila/genética , Evolução Molecular , Cromossomo X
18.
Curr Biol ; 17(4): R125-7, 2007 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-17307044

RESUMO

Evolutionary biologists have long recognized that the sterility and inviability of species hybrids must involve incompatible epistatic interactions between two (or more) genes. The first pair of such hybrid incompatibility genes has now been identified.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Epistasia Genética , Especiação Genética , Hibridização Genética , Modelos Genéticos , Animais , Especificidade da Espécie
19.
Am Nat ; 176 Suppl 1: S45-60, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21043780

RESUMO

Darwin's Origin of Species is often criticized for having little to say about speciation. The complaint focuses in particular on Darwin's supposed failure to explain the evolution of the sterility and inviability of interspecific hybrids. But in his chapter on hybridism, Darwin, working without genetics, got as close to the modern understanding of the evolution of hybrid sterility and inviability as might reasonably be expected. In particular, after surveying what was then known about interspecific crosses and the resulting hybrids, he established two facts that, while now taken for granted, were at the time radical. First, the sterility barriers between species are neither specially endowed by a creator nor directly favored by natural selection but rather evolve as incidental by-products of interspecific divergence. Second, the sterility of species hybrids results when their development is "disturbed by two organizations having been compounded into one." Bateson, Dobzhansky, and Muller later put Mendelian detail to Darwin's inference that the species-specific factors controlling development (i.e., genes) are sometimes incompatible. In this article, I highlight the major developments in our understanding of these interspecific genetic incompatibilities--from Darwin to Muller to modern theory--and review comparative, genetic, and molecular rules that characterize the evolution of hybrid sterility and inviability.


Assuntos
Biologia/história , Cruzamentos Genéticos , Especiação Genética , Infertilidade/genética , Animais , História do Século XIX , História do Século XX , História do Século XXI , Hibridização Genética , Plantas/genética , Seleção Genética , Especificidade da Espécie
20.
Genetics ; 181(4): 1545-55, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19189951

RESUMO

The Dobzhansky-Muller model posits that intrinsic postzygotic reproductive isolation--the sterility or lethality of species hybrids--results from the evolution of incompatible epistatic interactions between species: favorable or neutral alleles that become fixed in the genetic background of one species can cause sterility or lethality in the genetic background of another species. The kind of hybrid incompatibility that evolves between two species, however, depends on the particular evolutionary history of the causative substitutions. An allele that is functionally derived in one species can be incompatible with an allele that is functionally derived in the other species (a derived-derived hybrid incompatibility). But an allele that is functionally derived in one species can also be incompatible with an allele that has retained the ancestral state in the other species (a derived-ancestral hybrid incompatibility). The relative abundance of such derived-derived vs. derived-ancestral hybrid incompatibilities is unknown. Here, we characterize the genetics and evolutionary history of a lethal hybrid incompatibility between Drosophila mauritiana and its two sibling species, D. sechellia and D. simulans. We show that a hybrid lethality factor(s) in the pericentric heterochromatin of the D. mauritiana X chromosome, hybrid lethal on the X (hlx), is incompatible with a factor(s) in the same small autosomal region from both D. sechellia and D. simulans, Suppressor of hlx [Su(hlx)]. By combining genetic and phylogenetic information, we infer that hlx-Su(hlx) hybrid lethality is likely caused by a derived-ancestral incompatibility, a hypothesis that can be tested directly when the genes are identified.


Assuntos
Quimera/genética , Drosophila/genética , Genes Letais , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Evolução Molecular , Testes Genéticos , Modelos Genéticos , Linhagem , Filogenia , Especificidade da Espécie , Cromossomo X/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa