RESUMO
Prolonged sedentary behavior in the vast population of office and remote workers leads to increased cardiovascular and musculoskeletal health challenges, and existing solutions for encouraging breaks are either costly health coaches or notification systems that are easily ignored. A socially assistive robot (SAR) for promoting healthy workplace practices could provide the physical presence of a health coach along with the scalability of a notification system. To investigate the impact of such a system, we implemented a SAR as an alternative break-taking support solution and examined its impact on individual users' break-taking habits over relatively long-term deployments. We conducted an initial two-month-long study (N = 7) to begin to understand the robot's influence beyond the point of novelty, and we followed up with a week-long data collection (N = 14) to augment the dataset size. The resulting data was used to inform a robot behavior model and formulate possible methods of personalizing robot behaviors. We found that uninterrupted sitting time tended to decrease with our SAR intervention. During model formulation, we found participant responsiveness to the break-taking prompts could be classified into three archetypes and that archetype-specific adjustments to the general model led to improved system success. These results indicate that break-taking prompts are not a one-size-fits-all problem, and that even a small dataset can support model personalization for improving the success of assistive robotic systems.
RESUMO
One method for managing anxiety, a highly prevalent modern mental health condition, is the calming touch sensations of deep pressure therapy (DPT). Solutions for administering DPT include the Automatic Inflatable DPT (AID) Vest, which we designed in past work. Although benefits of DPT are clear in a subset of the related literature, these benefits are not ubiquitous. There is limited understanding of what factors lead to DPT success for a given user. In this work, we present the findings of a user study ( N = 25) that evaluates the effects of the AID Vest on anxiety. We compared physiological and self-reported measures of anxiety across Active (inflating) and Control (inactive) states of the AID Vest. In addition, we considered the presence of placebo effects and assessed participant comfort with social touch as a potential moderator. The results support our ability to reliably induce anxiety, and show that the Active AID Vest tended to reduce biosignals related to anxiety. We also found a significant relationship between comfort with social touch and reductions in self-reported state anxiety for the Active condition. Those who seek to successfully deploy DPT can benefit from this work.
Assuntos
Ansiedade , Toque Terapêutico , Percepção do Tato , Humanos , Ansiedade/terapia , Ansiedade/psicologia , Emoções , Tato/fisiologia , PressãoRESUMO
Introduction: The modern worldwide trend toward sedentary behavior comes with significant health risks. An accompanying wave of health technologies has tried to encourage physical activity, but these approaches often yield limited use and retention. Due to their unique ability to serve as both a health-promoting technology and a social peer, we propose robots as a game-changing solution for encouraging physical activity. Methods: This article analyzes the eight exergames we previously created for the Rethink Baxter Research Robot in terms of four key components that are grounded in the video-game literature: repetition, pattern matching, music, and social design. We use these four game facets to assess gameplay data from 40 adult users who each experienced the games in balanced random order. Results: In agreement with prior research, our results show that relevant musical cultural references, recognizable social analogues, and gameplay clarity are good strategies for taking an otherwise highly repetitive physical activity and making it engaging and popular among users. Discussion: Others who study socially assistive robots and rehabilitation robotics can benefit from this work by considering the presented design attributes to generate future hypotheses and by using our eight open-source games to pursue follow-up work on social-physical exercise with robots.