Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17095, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273478

RESUMO

The impacts of climate change are widespread and threaten natural systems globally. Yet, within regions, heterogeneous physical landscapes can differentially filter climate, leading to local response diversity. For example, it is possible that while freshwater lakes are sensitive to climate change, they may exhibit a diversity of thermal responses owing to their unique morphology, which in turn can differentially affect the growth and survival of vulnerable biota such as fishes. In particular, salmonids are cold-water fishes with complex life histories shaped by diverse freshwater habitats that are sensitive to warming temperatures. Here we examine the influence of habitat on the growth of sockeye salmon (Oncorhynchus nerka) in nursery lakes of Canada's Skeena River watershed over a century of change in regional temperature and intraspecific competition. We found that freshwater growth has generally increased over the last century. While growth tended to be higher in years with relatively higher summer air temperatures (a proxy for lake temperature), long-term increases in growth appear largely influenced by reduced competition. However, habitat played an important role in modulating the effect of high temperature. Specifically, growth was positively associated with rising temperatures in relatively deep (>50 m) nursery lakes, whereas warmer temperatures were not associated with a change in growth for fish among shallow lakes. The influence of temperature on growth also was modulated by glacier extent whereby the growth of fish from lakes situated in watersheds with little (i.e., <5%) glacier cover increased with rising temperatures, but decreased with rising temperatures for fish in lakes within more glaciated watersheds. Maintaining the integrity of an array of freshwater habitats-and the processes that generate and maintain them-will help foster a diverse climate-response portfolio for important fish species, which in turn can ensure that salmon watersheds are resilient to future environmental change.


Assuntos
Peixes , Salmão , Animais , Salmão/fisiologia , Rios , Lagos , Ecossistema , Mudança Climática
2.
Science ; 383(6680): 249, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38236965

RESUMO

The travels of "Elma" show she faced twin pressures-climate change and human hunting.

3.
Science ; 385(6709): 584-585, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39116248

RESUMO

Controversy over intentional burial by Homo naledi extends to new publishing models.

4.
JACS Au ; 4(4): 1295-1302, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665646

RESUMO

The molecular electron acceptor material Y6 has been a key part of the most recent surge in organic solar cell sunlight-to-electricity power conversion efficiency, which is now approaching 20%. Numerous studies have sought to understand the fundamental photophysical reasons for the exceptional performance of Y6 and its growing family of structural derivatives. Though significant uncertainty about several details remains, many have concluded that initially photogenerated excited states rapidly convert into electron-hole charge pairs in the neat material. These charge pairs are characterized by location of the electron and hole on different Y6 molecules, in contrast to the Frenkel excitons that dominate the behavior of most organic semiconductor materials. Here, we summarize the current state of knowledge regarding Y6 photophysics and the key observations that have led to it. We then link this understanding to other advances, such as the role of quadrupolar fields in donor-acceptor blends, and the importance of molecular interactions and organization in providing the structural basis for Y6's properties. Finally, we turn our attention to ways of making use of the new photophysics of Y6, and suggest molecular doping, crystal structure tuning, and electric field engineering as promising avenues for future exploration.

5.
Adv Radiat Oncol ; 9(3): 101399, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38292890

RESUMO

Purpose: The emerging online adaptive radiation therapy (OART) treatment strategy based on cone beam computed tomography allows for real-time replanning according to a patient's current anatomy. However, implementing this procedure requires a new approach across the patient's care path and monitoring of the "black box" adaptation process. This study identifies high-risk failure modes (FMs) associated with AI-driven OART and proposes an interdisciplinary workflow to mitigate potential medical errors from highly automated processes, enhance treatment efficiency, and reduce the burden on clinicians. Methods and Materials: An interdisciplinary working group was formed to identify safety concerns in each process step using failure mode and effects analysis (FMEA). Based on the FMEA results, the team designed standardized procedures and safety checklists to prevent errors and ensure successful task completion. The Risk Priority Numbers (RPNs) for the top twenty FMs were calculated before and after implementing the proposed workflow to evaluate its effectiveness. Three hundred seventy-four adaptive sessions across 5 treatment sites were performed, and each session was evaluated for treatment safety and FMEA assessment. Results: The OART workflow has 4 components, each with 4, 8, 13, and 4 sequentially executed tasks and safety checklists. Site-specific template preparation, which includes disease-specific physician directives and Intelligent Optimization Engine template testing, is one of the new procedures introduced. The interdisciplinary workflow significantly reduced the RPNs of the high-risk FMs, with an average decrease of 110 (maximum reduction of 305.5 and minimum reduction of 27.4). Conclusions: This study underscores the importance of addressing high-risk FMs associated with AI-driven OART and emphasizes the significance of safety measures in its implementation. By proposing a structured interdisciplinary workflow and integrated checklists, the study provides valuable insights into ensuring the safe and efficient delivery of OART while facilitating its effective integration into clinical practice.

6.
Clin Transl Radiat Oncol ; 48: 100813, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39149753

RESUMO

Purpose/Objectives: Retrospective analysis suggests that dose escalation to a biologically effective dose of more than 70 Gy may improve overall survival in patients with pancreatic ductal adenocarcinoma (PDAC), but such treatments in practice are limited by proximity of organs at risk (OARs). We hypothesized that CT-guided online adaptive radiotherapy (OART) can account for interfraction movement of OARs and allow for safe delivery of ablative doses. Materials/Methods: This is a single institution retrospective analysis of patients with PDAC treated with OART on the Ethos platform (Varian Medical Systems, a Siemens Healthineers Company, Palo Alto). All patients were treated to 40 Gy in 5 fractions. PTV overlapping with a 5 mm planning risk volume expansion on the stomach, duodenum and bowel received 25 Gy. Initial treatment plans were created conventionally. For each fraction, PTV and OAR volumes were recontoured with AI assistance after initial cone beam CT (CBCT). The adapted plan was calculated, underwent QA, and then compared to the scheduled plan. A second CBCT was obtained prior to delivery of the selected plan. Total treatment time (first CBCT to end of radiation delivery) and active physician time (first to second CBCT) were recorded. PTV_4000 V95 %, PTV_2500 V9 5%, and D0.03 cc to stomach, duodenum and bowel were reported for scheduled (S) and adapted (A) plans. CTCAEv5.0 toxicities were recorded. Statistical analysis was performed using a two-sided T test and α of 0.05. Results: 21 patients with unresectable or locally-recurrent PDAC were analyzed, with a total of 105 fractions. Average total time was 29 min and 16 s (16:36-49:40) and average active physician time was 19:41 min (9:25-39:34). All fractions were treated with adapted plans. 97 % of adapted plans met PTV_4000 V95.0 % >95.0 % coverage goal and 100 % of adapted plans met OAR dose constraints. Median follow up was 6.6 months. Only 1 patient experienced acute grade 3+ toxicity directly attributable to radiation. Only 1 patient experienced late grade 3+ toxicity directly attributable to radiation. Conclusions: Daily CT-based OART was associated with significantly reduced dose OARs while achieving superior PTV coverage. Given the relatively quick total treatment time, radiation delivery was generally well tolerated and easily incorporated into the clinic workflow. Our initial clinical experience demonstrates OART allows for safe dose escalation in the treatment of PDAC.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa