Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Biochem Biophys Res Commun ; 706: 149746, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461646

RESUMO

Polyglycine hydrolases are fungal effectors composed of an N-domain with unique sequence and structure and a C-domain that resembles ß-lactamases, with serine protease activity. These secreted fungal proteins cleave Gly-Gly bonds within a polyglycine sequence in corn ChitA chitinase. The polyglycine hydrolase N-domain (PND) function is unknown. In this manuscript we provide evidence that the PND does not directly participate in ChitA cleavage. In vitro analysis of site-directed mutants in conserved residues of the PND of polyglycine hydrolase Es-cmp did not specifically impair protease activity. Furthermore, in silico structural models of three ChitA-bound polyglycine hydrolases created by High Ambiguity Driven protein-protein DOCKing (HADDOCK) did not predict significant interactions between the PND and ChitA. Together these results suggest that the PND has another function. To determine what types of PND-containing proteins exist in nature we performed a computational analysis of Foldseek-identified PND-containing proteins. The analysis showed that proteins with PNDs are present throughout biology as either single domain proteins or fused to accessory domains that are diverse but are usually proteases or kinases.


Assuntos
Peptídeo Hidrolases , Peptídeos , Peptídeos/química , Peptídeo Hidrolases/metabolismo , Endopeptidases/metabolismo , Proteólise
2.
Metab Eng ; 83: 61-74, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522576

RESUMO

5-Methyluridine (5-MU) is a prominent intermediate for industrial synthesis of several antiviral-drugs, however, its availability over the past decades has overwhelmingly relied on chemical and enzymatic strategies. Here, we have realized efficient production of 5-MU in E. coli, for the first time, via a designer artificial pathway consisting of a two-enzyme cascade (UMP 5-methylase and phosphatase). More importantly, we have engineered the E. coli cell factory to boost 5-MU production by systematic evaluation of multiple strategies, and as a proof of concept, we have further developed an antibiotic-free fermentation strategy to realize 5-MU production (10.71 g/L) in E. coli MB229 (a ΔthyA strain). Remarkably, we have also established a versatile and robust platform with exploitation of the engineered E. coli for efficient production of diversified UMP-derived chemicals. This study paves the way for future engineering of E. coli as a synthetic biology platform for acceleratively accessing UMP-derived chemical diversities.


Assuntos
Escherichia coli , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
3.
Fungal Genet Biol ; 141: 103399, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32387407

RESUMO

Subtilases are a large family of serine proteases that occur throughout biology. A small subset contain protease-associated (PA) domains that are structurally separate from but encoded within the active site. In bacteria, subtilase PA domains function to recruit specific protein substrates. Here we demonstrate that a protease secreted by the fungal corn pathogen Stenocarpella maydis, which truncates corn ChitA chitinase, is a PA domain subtilase. Protease was purified from S. maydis cultures and tryptic peptides were analyzed by LC-MS/MS. Ions were mapped to two predicted PA domain subtilases. Yeast strains were engineered to express each protease. One failed to produce recombinant protein while the other secreted protease that truncated ChitA. This protease, that we named kilbournase, was purified and characterized. It cleaved multiple peptide bonds in the amino-terminal chitin binding domain of ChitA while leaving the catalytic domain intact. Kilbournase was more active on the ChitA-B73 alloform compared to ChitA-LH82 and did not cleave AtChitIV3, a homolog from Arabidopsis thaliana, indicating a high level of specificity. Truncation of corn ChitA by kilbournase resembles truncation of human C5a by Streptococcus pyogenes ScpA, arguing that PA domain proteases in bacteria and fungi may commonly target specific host proteins.


Assuntos
Ascomicetos/genética , Peptídeo Hidrolases/genética , Subtilisinas/genética , Zea mays/genética , Arabidopsis/genética , Ascomicetos/patogenicidade , Domínio Catalítico/genética , Quitinases/genética , Quitinases/isolamento & purificação , Cromatografia Líquida , Peptídeo Hidrolases/isolamento & purificação , Espectrometria de Massas em Tandem , Zea mays/microbiologia
4.
Appl Environ Microbiol ; 86(2)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31676476

RESUMO

Formycin A (FOR-A) and pyrazofurin A (PRF-A) are purine-related C-nucleoside antibiotics in which ribose and a pyrazole-derived base are linked by a C-glycosidic bond. However, the logic underlying the biosynthesis of these molecules has remained largely unexplored. Here, we report the discovery of the pathways for FOR-A and PRF-A biosynthesis from diverse actinobacteria and propose that their biosynthesis is likely initiated by a lysine N6-monooxygenase. Moreover, we show that forT and prfT (involved in FOR-A and PRF-A biosynthesis, respectively) mutants are correspondingly capable of accumulating the unexpected pyrazole-related intermediates 4-amino-3,5-dicarboxypyrazole and 3,5-dicarboxy-4-oxo-4,5-dihydropyrazole. We also decipher the enzymatic mechanism of ForT/PrfT for C-glycosidic bond formation in FOR-A/PRF-A biosynthesis. To our knowledge, ForT/PrfT represents an example of ß-RFA-P (ß-ribofuranosyl-aminobenzene 5'-phosphate) synthase-like enzymes governing C-nucleoside scaffold construction in natural product biosynthesis. These data establish a foundation for combinatorial biosynthesis of related purine nucleoside antibiotics and also open the way for target-directed genome mining of PRF-A/FOR-A-related antibiotics.IMPORTANCE FOR-A and PRF-A are C-nucleoside antibiotics known for their unusual chemical structures and remarkable biological activities. Deciphering the enzymatic mechanism for the construction of a C-nucleoside scaffold during FOR-A/PRF-A biosynthesis will not only expand the biochemical repertoire for novel enzymatic reactions but also permit target-oriented genome mining of FOR-A/PRF-A-related C-nucleoside antibiotics. Moreover, the availability of FOR-A/PRF-A biosynthetic gene clusters will pave the way for the rational generation of designer FOR-A/PRF-A derivatives with enhanced/selective bioactivity via synthetic biology strategies.


Assuntos
Antibacterianos/biossíntese , Formicinas/biossíntese , Nocardia/metabolismo , Ribonucleosídeos/biossíntese , Streptomyces/metabolismo , Amidas , Pirazóis , Ribose
5.
Curr Microbiol ; 77(5): 875-881, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31938805

RESUMO

A variety of potential inhibitors were tested for the first time for the suppression of Erwinia amylovora, the causal agent of fire blight in apples and pears. Strain variability was evident in susceptibility to inhibitors among five independently isolated virulent strains of E. amylovora. However, most strains were susceptible to culture supernatants from strains of Bacillus spp., and particularly to the recently described species B. nakamurai. Minimal inhibitory concentrations (MICs) were 5-20% (vol/vol) of culture supernatant from B. nakamurai against all five strains of E. amylovora. Although Bacillus species have been previously reported to produce lipopeptide inhibitors of E. amylovora, matrix-assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) and column chromatography indicated that the inhibitor from B. nakamurai was not a lipopeptide, but rather a novel inhibitor.


Assuntos
Antibiose , Bacillus/fisiologia , Erwinia amylovora/patogenicidade , Doenças das Plantas/prevenção & controle , Bacillus/crescimento & desenvolvimento , Meios de Cultura , Malus/microbiologia , Testes de Sensibilidade Microbiana , Doenças das Plantas/microbiologia , Pyrus/microbiologia
6.
Anal Chem ; 90(13): 8044-8050, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29883540

RESUMO

A novel group of carbohydrate derivatives is described that uniquely assign cis/ trans-2,3-aldose stereoisomers at low nanomolar concentrations. Aldopentoses, aldohexoses, or component aldoses from hydrolysis of polysaccharides or oligosaccharides react with cysteamine in pyridine to give quantitative formation of thiazolidines, which are subsequently peracetylated in a one-pot reaction. The nonpolar thiazolidines peracetate (TPA) derivatives are analyzed by gas chromatography and electron impact mass spectrometry (GC/EI-MS), each aldose giving rise to two TPA geometric isomers. The quantitative ratio of these diastereomers is dependent upon whether the parent monosaccharide is cis-2,3-(Rib, Lyx, Man, All, Gul, and Tal), or trans-2,3-aldose (Xyl, Ara, Glc, Gal, Ido, and Alt). TPAs generate observed EI-MS fragment ions characteristic of C1-C2 and C3-C4 bond cleavage of the parent sugars. This has been used to estimate the extent of metabolic labeling of microbial cell-wall carbohydrates, especially into the defining anomeric carbons and during aldolase / ketolase -catalyzed rearrangements.


Assuntos
Acetatos/química , Cromatografia Gasosa-Espectrometria de Massas , Monossacarídeos/química , Tiazolidinas/química , Oligossacarídeos/química , Estereoisomerismo
7.
Appl Environ Microbiol ; 84(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30217843

RESUMO

Purine nucleoside antibiotic pairs, concomitantly produced by a single strain, are an important group of microbial natural products. Here, we report a target-directed genome mining approach to elucidate the biosynthesis of the purine nucleoside antibiotic pair aristeromycin (ARM) and coformycin (COF) in Micromonospora haikouensis DSM 45626 (a new producer for ARM and COF) and Streptomyces citricolor NBRC 13005 (a new COF producer). We also provide biochemical data that MacI and MacT function as unusual phosphorylases, catalyzing an irreversible reaction for the tailoring assembly of neplanocin A (NEP-A) and ARM. Moreover, we demonstrate that MacQ is shown to be an adenosine-specific deaminase, likely relieving the potential "excess adenosine" for producing cells. Finally, we report that MacR, an annotated IMP dehydrogenase, is actually an NADPH-dependent GMP reductase, which potentially plays a salvage role for the efficient supply of the precursor pool. Hence, these findings illustrate a fine-tuned pathway for the biosynthesis of ARM and also open the way for the rational search for purine antibiotic pairs.IMPORTANCE ARM and COF are well known for their prominent biological activities and unusual chemical structures; however, the logic of their biosynthesis has long been poorly understood. Actually, the new insights into the ARM and COF pathway will not only enrich the biochemical repertoire for interesting enzymatic reactions but may also lay a solid foundation for the combinatorial biosynthesis of this group of antibiotics via a target-directed genome mining strategy.


Assuntos
Actinobacteria/metabolismo , Adenosina/análogos & derivados , Antibacterianos/metabolismo , Coformicina/biossíntese , Nucleosídeos de Purina/biossíntese , Actinobacteria/genética , Adenosina/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , GMP Redutase/genética , GMP Redutase/metabolismo
8.
Appl Environ Microbiol ; 84(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29703734

RESUMO

Polyoxin (POL) is an unusual peptidyl nucleoside antibiotic, in which the peptidyl moiety and nucleoside skeleton are linked by an amide bond. However, their biosynthesis remains poorly understood. Here, we report the deciphering of PolG as an ATP-dependent ligase responsible for the assembly of POL. A polG mutant is capable of accumulating multiple intermediates, including the peptidyl moiety (carbamoylpolyoxamic acid [CPOAA]) and the nucleoside skeletons (POL-C and the previously overlooked thymine POL-C). We further demonstrate that PolG employs an ATP-dependent mechanism for amide bond formation and that the generation of the hybrid nucleoside antibiotic POL-N is also governed by PolG. Finally, we determined that the deduced ATP-binding sites are functionally essential for PolG and that they are highly conserved in a number of related ATP-dependent ligases. These insights have allowed us to propose a catalytic mechanism for the assembly of peptidyl nucleoside antibiotic via an acyl-phosphate intermediate and have opened the way for the combinatorial biosynthesis/pathway engineering of this group of nucleoside antibiotics.IMPORTANCE POL is well known for its remarkable antifungal bioactivities and unusual structural features. Actually, elucidation of the POL assembly logic not only provides the enzymatic basis for further biosynthetic understanding of related peptidyl nucleoside antibiotics but also contributes to the rational generation of more hybrid nucleoside antibiotics via synthetic biology strategy.


Assuntos
Trifosfato de Adenosina/metabolismo , Antibacterianos/biossíntese , Ligases/metabolismo , Antifúngicos/metabolismo , Sítios de Ligação , Vias Biossintéticas/genética , Modelos Moleculares , Família Multigênica/genética , Ácido Oxâmico/análogos & derivados , Nucleosídeos de Pirimidina/biossíntese , Nucleosídeos de Pirimidina/genética , Streptomyces/genética , Streptomyces/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato , Biologia Sintética
9.
World J Microbiol Biotechnol ; 32(12): 199, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27757794

RESUMO

Liamocins are unique heavier-than-water "oils" produced by certain strains of the fungus Aureobasidium pullulans. Liamocins have antibacterial activity with specificity for Streptococcus sp. Previous studies reported that liamocin yields were highest from strains of A. pullulans belonging to phylogenetic clades 8, 9, and 11, cultured on medium containing sucrose. In this study, 27 strains from these clades were examined for the first time for production of liamocins from agricultural biomass substrates. Liamocin yields were highest from strains in phylogenetic clade 11, and yields were higher from cultures grown on sucrose than from those grown on pretreated wheat straw. However, when supplementary enzymes (cellulase, ß-glucosidase, and xylanase) were added, liamocin production on pretreated wheat straw was equivalent to that on sucrose. Liamocins produced from wheat straw were free of the melanin contamination common in sucrose-grown cultures. Furthermore, MALDI-TOF MS analysis showed that liamocins produced from wheat straw were under-acetylated, resulting in higher proportions of the mannitol A1 and B1 species of liamocin, the latter of which has the highest biological activity against Streptococcus sp.


Assuntos
Antibacterianos/metabolismo , Manitol/metabolismo , Saccharomycetales/classificação , Saccharomycetales/crescimento & desenvolvimento , Agricultura , Antibacterianos/farmacologia , Biomassa , Meios de Cultura/química , Manitol/farmacologia , Óleos , Filogenia , Saccharomycetales/isolamento & purificação , Saccharomycetales/metabolismo , Streptococcus/efeitos dos fármacos , Sacarose/metabolismo
10.
Anal Chem ; 87(14): 7282-90, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26075577

RESUMO

The structural analysis of complex carbohydrates typically requires the assignment of three parameters: monosaccharide composition, the position of glycosidic linkages between monosaccharides, and the position and nature of noncarbohydrate substituents. The glycosidic linkage positions are often determined by permethylation analysis, but this can be complicated by high viscosity or poor solubility, resulting in under-methylation. This is a drawback because an under-methylated position may be misinterpreted as the erroneous site of a linkage or substituent. Here, we describe an alternative approach to linkage analysis that makes use of a nonreversible deuterium exchange of C-H protons on the carbohydrate backbone. The exchange reaction is conducted in deuterated water catalyzed by Raney nickel, and results in the selective exchange of C-H protons adjacent to free hydroxyl groups. Hence, the position of the residual C-H protons is indicative of the position of glycosidic linkages or other substituents and can be readily assigned by heteronuclear single quantum coherence-nuclear magnetic resonance (HSQC-NMR) or, following suitable derivatization, by gas chromatography-mass spectroscopy (GC/MS) analysis. Moreover, because the only changes to the parent sugar are proton/deuterium exchanges, the composition and linkage analysis can be determined in a single step.

11.
Biochem J ; 460(2): 187-98, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24627966

RESUMO

Cmps (chitinase-modifying proteins) are fungal proteases that truncate plant class IV chitinases by cleaving near their N-termini. We previously described Fv-cmp, a fungalysin protease that cleaves a conserved glycine-cysteine bond within the hevein domain. In the present paper we describe a new type of cmp, polyglycine hydrolases, as proteases that selectively cleave glycine-glycine peptide bonds within the polyglycine linker of plant class IV chitinases. Polyglycine hydrolases were purified from Cochliobolus carbonum (syn. Bipolaris zeicola; Bz-cmp) and Epicoccum sorghi (syn. Phoma sorghina; Es-cmp) and were shown to cleave three different maize class IV chitinase substrates. The proteolytic cleavage sites were assessed by SDS/PAGE and MALDI-TOF-MS and indicated the cleavage of multiple peptide bonds within the polyglycine linker regions. Site-directed mutagenesis was used to produce mutants of maize ChitB chitinase in which two serine residues in its linker were systematically modified to glycine. Serine to glycine changes in the ChitB linker resulted in higher susceptibility to truncation by Bz-cmp and altered substrate specificity for Bz-cmp and Es-cmp, such that different glycine-glycine peptide bonds were cleaved. Removal of the hevein domain led to loss of Es-cmp activity, indicating that interactions outside of the active site are important for recognition. Our findings demonstrate that plant class IV chitinases with polyglycine linkers are targeted for truncation by selective polyglycine hydrolases that are secreted by plant pathogenic fungi. This novel proteolysis of polyglycine motifs is previously unreported, but the specificity is similar to that of bacterial lysostaphin proteases, which cleave pentaglycine cross-links from peptidoglycan.


Assuntos
Ascomicetos/enzimologia , Quitinases/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Domínio Catalítico , Quitinases/genética , Mutagênese Sítio-Dirigida , Peptídeo Hidrolases/isolamento & purificação , Plantas , Especificidade por Substrato
12.
Biotechnol Lett ; 37(3): 673-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25335747

RESUMO

An enzymatic method was developed for the progressive modification of the polysaccharide schizophyllan. Fungal strains Hypocrea nigricans NRRL 62555, Penicillium crustosum NRRL 62558, and Penicillium simplicissimum NRRL 62550 were previously identified as novel sources of ß-endoglucanase with specificity towards schizophyllan. Concentrated enzyme preparations from these strains showed specific activities of 1.7-4.3 U ß-glucanase/mg protein. Using dilutions of these enzymes in time course digestions, schizophyllan was progressively modified to reduced molecular weight species. Glucose and oligosaccharides were found only in the more complete digestions, and thus modified schizophyllan can be produced quantitatively, without loss, to small molecules. Permethylation analysis confirmed that modified schizophyllan retains the fundamental linkage structure of native schizophyllan. Modified schizophyllan species showed progressively reduced viscosity profiles, and all exhibited pseudoplasticity in response to shear thinning.


Assuntos
Glucosidases/metabolismo , Penicillium/enzimologia , Sizofirano/metabolismo , Trichoderma/enzimologia , Biotransformação , Cinética , Fatores de Tempo
13.
Biotechnol Lett ; 37(10): 2075-81, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26112325

RESUMO

OBJECTIVES: To compare production of antibacterial liamocins (polyol lipids) by diverse strains of Aureobasidium pullulans grown on different culture media. RESULTS: Liamocins produced by strains of A. pullulans have potential agricultural and pharmaceutical applications as antibacterials with specificity against Streptococcus spp. Six strains of A. pullulans were characterized for liamocin production on four different culture media. The choice of strain and culture medium affected growth, liamocin yields, and production of contaminating pigments. Best growth and highest liamocin yields were obtained using A. pullulans strain NRRL 50384 grown on a sucrose basal medium. Unexpectedly, the choice of strain and culture medium also affected the structure of liamocins produced, providing novel types of liamocins. Liamocins varied not only in the ratios of trimer and tetramer polyester tail groups, but also in the nature of the polyol headgroup, which could include mannitol, arabitol, or glycerol. CONCLUSIONS: The ability to conveniently produce novel types of liamocins in good yields will provide novel antibacterials for applied uses, and facilitate structure-function studies on the mechanism of antibacterial activity.


Assuntos
Antibacterianos/metabolismo , Ascomicetos/metabolismo , Metabolismo dos Lipídeos , Polímeros/metabolismo , Ascomicetos/crescimento & desenvolvimento , Meios de Cultura/química , Modelos Moleculares , Estrutura Molecular , Pigmentos Biológicos , Polímeros/química , Streptococcus/efeitos dos fármacos
14.
J Bacteriol ; 196(9): 1768-79, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24584498

RESUMO

Two related actinomycetes, Glycomyces sp. strain NRRL B-16210 and Stackebrandtia nassauensis NRRL B-16338, were identified as potential phosphonic acid producers by screening for the gene encoding phosphoenolpyruvate (PEP) mutase, which is required for the biosynthesis of most phosphonates. Using a variety of analytical techniques, both strains were subsequently shown to produce phosphonate-containing exopolysaccharides (EPS), also known as phosphonoglycans. The phosphonoglycans were purified by sequential organic solvent extractions, methanol precipitation, and ultrafiltration. The EPS from the Glycomyces strain has a mass of 40 to 50 kDa and is composed of galactose, xylose, and five distinct partially O-methylated galactose residues. Per-deutero-methylation analysis indicated that galactosyl residues in the polysaccharide backbone are 3,4-linked Gal, 2,4-linked 3-MeGal, 2,3-linked Gal, 3,6-linked 2-MeGal, and 4,6-linked 2,3-diMeGal. The EPS from the Stackebrandtia strain is comprised of glucose, galactose, xylose, and four partially O-methylated galactose residues. Isotopic labeling indicated that the O-methyl groups in the Stackebrandtia phosphonoglycan arise from S-adenosylmethionine. The phosphonate moiety in both phosphonoglycans was shown to be 2-hydroxyethylphosphonate (2-HEP) by (31)P nuclear magnetic resonance (NMR) and mass spectrometry following strong acid hydrolysis of the purified molecules. Partial acid hydrolysis of the purified EPS from Glycomyces yielded 2-HEP in ester linkage to the O-5 or O-6 position of a hexose and a 2-HEP mono(2,3-dihydroxypropyl)ester. Partial acid hydrolysis of Stackebrandtia EPS also revealed the presence of 2-HEP mono(2,3-dihydroxypropyl)ester. Examination of the genome sequences of the two strains revealed similar pepM-containing gene clusters that are likely to be required for phosphonoglycan synthesis.


Assuntos
Actinomycetales/química , Organofosfonatos/metabolismo , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , Actinomycetales/enzimologia , Actinomycetales/genética , Actinomycetales/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Peso Molecular , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/metabolismo , Polissacarídeos Bacterianos/metabolismo
15.
World J Microbiol Biotechnol ; 30(8): 2199-204, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24659335

RESUMO

Liamocins are structurally unique, heavier-than-water "oils" produced by certain strains of Aureobasidium pullulans. The aim of the current study is to identify new sources of liamocins and evaluate their potential as anticancer agents. Nine strains of A. pullulans from phylogenetic clades 8, 9, and 11 were examined for the first time for production of liamocins. Strains in these clades have only been isolated from tropical environments, and all strains tested here were from various locations in Thailand. Strains RSU 9, RSU 21, and RSU 29, all from clade 11, produced from 7.0 to 8.6 g liamocins/l from medium containing 5 % sucrose. These are the highest yields of liamocins that we have found thus far. These strains also produced from 9.4 to 17 g pullulan/l. The structural identity of liamocins was confirmed by matrix-assisted laser desorption/ionization mass spectrometry; differential spectra were obtained in which the dominant ion was either at about m/z 805.5 or m/z 949.6, consistent with the structure of liamocins. Liamocins from A. pullulans strains RSU 9 and RSU 21 inhibited two human breast cancer cell lines and a human cervical cancer cell line (IC50 values of 32.2 ± 1.4 to 63.1 ± 2.4 µg liamocins/ml) but were not toxic to a normal cell line. Liamocins weakly inhibited a strain of Enterococcus faecalis, but did not inhibit strains of Lactobacillus fermentum, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Thus, A. pullulans phylogenetic clade 11 is a promising source of liamocins, and these compounds merit further examination as potential anticancer agents.


Assuntos
Ascomicetos/metabolismo , Proliferação de Células/efeitos dos fármacos , Manitol/análogos & derivados , Manitol/metabolismo , Óleos/metabolismo , Álcoois Açúcares/metabolismo , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Ascomicetos/química , Ascomicetos/classificação , Bactérias/efeitos dos fármacos , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HeLa , Humanos , Manitol/química , Manitol/farmacologia , Estrutura Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Óleos/química , Óleos/farmacologia , Álcoois Açúcares/química , Álcoois Açúcares/farmacologia , Células Vero
16.
Microbiol Spectr ; 12(5): e0050824, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501867

RESUMO

Tuberculostearic acid (TBSA) is a fatty acid unique to mycobacteria and some corynebacteria and has been studied due to its diagnostic value, biofuel properties, and role in membrane dynamics. In this study, we demonstrate that TBSA production can be abrogated either by addition of pivalic acid to mycobacterial growth cultures or by a bfaA gene knockout encoding a flavin adenine dinucleotide (FAD)-binding oxidoreductase. Mycobacterium avium subspecies paratuberculosis (Map) growth and TBSA production were inhibited in 0.5-mg/mL pivalic acid-supplemented cultures, but higher concentrations were needed to have a similar effect in other mycobacteria, including Mycobacterium smegmatis. While Map C-type strains, isolated from cattle and other ruminants, will produce TBSA in the absence of pivalic acid, the S-type Map strains, typically isolated from sheep, do not produce TBSA in any condition. A SAM-dependent methyltransferase encoded by bfaB and FAD-binding oxidoreductase are both required in the two-step biosynthesis of TBSA. However, S-type strains contain a single-nucleotide polymorphism in the bfaA gene, rendering the oxidoreductase enzyme vestigial. This results in the production of an intermediate, termed 10-methylene stearate, which is detected only in S-type strains. Fatty acid methyl ester analysis of a C-type Map bfaA knockout revealed the loss of TBSA production, but the intermediate was present, similar to the S-type strains. Collectively, these results demonstrate the subtle biochemical differences between two primary genetic lineages of Map and other mycobacteria as well as explain the resulting phenotype at the genetic level. These data also suggest that TBSA should not be used as a diagnostic marker for Map.IMPORTANCEBranched-chain fatty acids are a predominant cell wall component among species belonging to the Mycobacterium genus. One of these is TBSA, which is a long-chain middle-branched fatty acid used as a diagnostic marker for Mycobacterium tuberculosis. This fatty acid is also an excellent biolubricant. Control of its production is important for industrial purposes as well as understanding the biology of mycobacteria. In this study, we discovered that a carboxylic acid compound termed pivalic acid inhibits TBSA production in mycobacteria. Furthermore, Map strains from two separate genetic lineages (C-type and S-type) showed differential production of TBSA. Cattle-type strains of Mycobacterium avium subspecies paratuberculosis produce TBSA, while the sheep-type strains do not. This important phenotypic difference is attributed to a single-nucleotide deletion in sheep-type strains of Map. This work sheds further light on the mechanism used by mycobacteria to produce tuberculostearic acid.


Assuntos
Proteínas de Bactérias , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Ácidos Esteáricos , Mycobacterium avium subsp. paratuberculosis/genética , Mycobacterium avium subsp. paratuberculosis/metabolismo , Mycobacterium avium subsp. paratuberculosis/efeitos dos fármacos , Animais , Paratuberculose/microbiologia , Bovinos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ovinos/microbiologia , Ácidos Graxos/metabolismo , Polimorfismo de Nucleotídeo Único , Metiltransferases/genética , Metiltransferases/metabolismo
17.
J Antibiot (Tokyo) ; 77(4): 245-256, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38238588

RESUMO

Tunicamycins (TUN) are well-defined, Streptomyces-derived natural products that inhibit protein N-glycosylation in eukaryotes, and by a conserved mechanism also block bacterial cell wall biosynthesis. TUN inhibits the polyprenylphosphate-N-acetyl-hexosamine-1-phospho-transferases (PNPT), an essential family of enzymes found in both bacteria and eukaryotes. We have previously published the development of chemically modified TUN, called TunR1 and TunR2, that have considerably reduced activity on eukaryotes but that retain the potent antibacterial properties. A mechanism for this reduced toxicity has also been reported. TunR1 and TunR2 have been tested against mammalian cell lines in culture and against live insect cells but, until now, no in vivo evaluation has been undertaken for vertebrates. In the current work, TUN, TunR1, and TunR2 are investigated for their relative toxicity and antimycobacterial activity in zebrafish using a well-established Mycobacterium marinum (M. marinum) infection system, a model for studying human Mycobacterium tuberculosis infections. We also report the relative ability to activate the unfolded protein response (UPR), the known mechanism for the eukaryotic toxicity observed with TUN treatment. Importantly, TunR1 and TunR2 retained their antimicrobial properties, as evidenced by a reduction in M. marinum bacterial burden, compared to DMSO-treated zebrafish. In summary, findings from this study highlight the characteristics of recently developed TUN derivatives, mainly TunR2, and its potential for use as a novel anti-bacterial agent for veterinary and potential medical purposes.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium marinum , Tunicamicina , Animais , Humanos , Antibacterianos/farmacologia , Mamíferos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/fisiologia , Tunicamicina/química , Tunicamicina/análogos & derivados , Peixe-Zebra/microbiologia , Fosfotransferases/química
18.
Curr Microbiol ; 66(5): 443-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23296912

RESUMO

Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Four bacterial strains, designated as ALT3A, ALT3B, ALT17, and MR1, produced inhibitory effects on growth of LAB. Sequencing of rRNA identified these strains as species of Bacillus subtilis (ALT3A and ALT3B) and B. cereus (ALT17 and MR1). Cell mass from colonies and agar samples from inhibition zones were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The spectra of ALT3A and ALT3B showed a strong signal at m/z 1,060, similar in mass to the surfactin family of antimicrobial lipopeptides. ALT3A and ALT3B were analyzed by zymogram analysis using SDS-PAGE gels placed on agar plates inoculated with LAB. Cell lysates possessed an inhibitory protein of less than 10 kDa, consistent with the production of an antibacterial lipopeptide. Mass spectra of ALT17 and MR1 had notable signals at m/z 908 and 930 in the whole cell extracts and at m/z 687 in agar, but these masses do not correlate with those of previously reported antibacterial lipopeptides, and no antibacterial activity was detected by zymogram. The antibacterial activities produced by these strains may have application in the fuel ethanol industry as an alternative to antibiotics for prevention and control of bacterial contamination.


Assuntos
Antibacterianos/biossíntese , Antibiose , Bacillus/metabolismo , Etanol/metabolismo , Fermentação , Lactobacillales/crescimento & desenvolvimento , Antibacterianos/química , Bacillus/isolamento & purificação , Meio Ambiente
19.
J Ind Microbiol Biotechnol ; 40(1): 105-12, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23090286

RESUMO

Schizophyllan is a homoglucan produced by the fungus Schizophyllum commune, with a ß-1,3-linked backbone and ß-1,6-linked side chains of single glucose units at every other residue. Schizophyllan is commercially produced for pharmaceutical and cosmetics uses. However, the unique physical properties of schizophyllan suggest that it may have biomaterials applications. Schizophyllan is conventionally produced by submerged culture fermentation using glucose as a carbon source. This study demonstrates for the first time the efficient utilization of agricultural biomass substrates, particularly distiller's dried grains with solubles, for schizophyllan production. Sugar composition analysis, NMR, and permethylation linkage analysis confirmed that the recovered product was schizophyllan. Schizophyllan produced from agricultural residues was of a high molecular weight and exhibited solution viscosity properties similar to those of commercially produced material. Utilization of biomass substrates could reduce the cost of schizophyllan production and provide a new value-added bioproduct for integrated biorefineries of the future.


Assuntos
Sizofirano/biossíntese , Biomassa , Biopolímeros/biossíntese , Biopolímeros/química , Produtos Agrícolas , Fermentação , Espectroscopia de Ressonância Magnética , Schizophyllum/metabolismo , Sizofirano/química , Viscosidade
20.
Acta Crystallogr D Struct Biol ; 79(Pt 2): 168-176, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36762862

RESUMO

Polyglycine hydrolases (PGHs) are secreted fungal proteases that cleave the polyglycine linker of Zea mays ChitA, a defensive chitinase, thus overcoming one mechanism of plant resistance to infection. Despite their importance in agriculture, there has been no previous structural characterization of this family of proteases. The objective of this research was to investigate the proteolytic mechanism and other characteristics by structural and biochemical means. Here, the first atomic structure of a polyglycine hydrolase was identified. It was solved by X-ray crystallography using a RoseTTAFold model, taking advantage of recent technical advances in structure prediction. PGHs are composed of two domains: the N- and C-domains. The N-domain is a novel tertiary fold with an as-yet unknown function that is found across all kingdoms of life. The C-domain shares structural similarities with class C ß-lactamases, including a common catalytic nucleophilic serine. In addition to insights into the PGH family and its relationship to ß-lactamases, the results demonstrate the power of complementing experimental structure determination with new computational techniques.


Assuntos
Quitinases , Peptídeos , Peptídeo Hidrolases , beta-Lactamases/química , Quitinases/química , Endopeptidases , Cristalografia por Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa