Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 21(1): 88, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807215

RESUMO

BACKGROUND: Multiple sclerosis is a progressive neurological disease that affects the central nervous system, resulting in various symptoms. Among these, impaired mobility and fatigue stand out as the most prevalent. The progressive worsening of symptoms adversely alters quality of life, social interactions and participation in activities of daily living. The main objective of this study is to bring new insights into the impact of a multidisciplinary inpatient rehabilitation on supervised walking tests, physical activity (PA) behavior and everyday gait patterns. METHODS: A total of 52 patients, diagnosed with multiple sclerosis, were evaluated before and after 3 weeks of inpatient rehabilitation. Each measurement period consisted of clinical assessments and 7 days home monitoring using foot-mounted sensors. In addition, we considered two subgroups based on the Expanded Disability Status Scale (EDSS) scores: 'mild' (EDSS < 5) and 'severe' (EDSS ≥ 5) disability levels. RESULTS: Significant improvements in fatigue, quality of life and perceived mobility were reported. In addition, walking capacity, as assessed by the 10-m walking test, two-minute walk test and timed-up-and-go test, improved significantly after rehabilitation. Regarding the home assessment, mildly disabled patients significantly increased their locomotion per day and complexity of daily PA pattern after rehabilitation, while severely disabled patients did not significantly change. There were distinct and significant differences in gait metrics (i.e., gait speed, stride length, cadence) between mildly and severely disabled patients, but the statistical models did not show a significant overall rehabilitation effect on these gait metrics. CONCLUSION: Inpatient rehabilitation showed beneficial effects on self-reported mobility, self-rated health questionnaires, and walking capacity in both mildly and severely disabled patients. However, these improvements do not necessarily translate to home performance in severely disabled patients, or only marginally in mildly disabled patients. Motivational and behavioral factors should also be considered and incorporated into treatment strategies.


Assuntos
Atividades Cotidianas , Exercício Físico , Esclerose Múltipla , Humanos , Esclerose Múltipla/reabilitação , Esclerose Múltipla/complicações , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/psicologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Exercício Físico/fisiologia , Pacientes Internados , Qualidade de Vida , Marcha/fisiologia , Fadiga/reabilitação , Fadiga/etiologia , Fadiga/fisiopatologia
2.
Sensors (Basel) ; 21(16)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34451093

RESUMO

Recent advances in wearable technologies integrating multi-modal sensors have enabled the in-field monitoring of several physiological metrics. In sport applications, wearable devices have been widely used to improve performance while minimizing the risk of injuries and illness. The objective of this project is to estimate breathing rate (BR) from respiratory sinus arrhythmia (RSA) using heart rate (HR) recorded with a chest belt during physical activities, yielding additional physiological insight without the need of an additional sensor. Thirty-one healthy adults performed a run at increasing speed until exhaustion on an instrumented treadmill. RR intervals were measured using the Polar H10 HR monitoring system attached to a chest belt. A metabolic measurement system was used as a reference to evaluate the accuracy of the BR estimation. The evaluation of the algorithms consisted of exploring two pre-processing methods (band-pass filters and relative RR intervals transformation) with different instantaneous frequency tracking algorithms (short-term Fourier transform, single frequency tracking, harmonic frequency tracking and peak detection). The two most accurate BR estimations were achieved by combining band-pass filters with short-term Fourier transform, and relative RR intervals transformation with harmonic frequency tracking, showing 5.5% and 7.6% errors, respectively. These two methods were found to provide reasonably accurate BR estimation over a wide range of breathing frequency. Future challenges consist in applying/validating our approaches during in-field endurance running in the context of fatigue assessment.


Assuntos
Corrida , Dispositivos Eletrônicos Vestíveis , Adulto , Algoritmos , Frequência Cardíaca , Humanos , Monitorização Fisiológica , Taxa Respiratória
3.
Med Biol Eng Comput ; 61(9): 2341-2352, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37069465

RESUMO

Walking activity and gait parameters are considered among the most relevant mobility-related parameters. Currently, gait assessments have been mainly analyzed in laboratory or hospital settings, which only partially reflect usual performance (i.e., real world behavior). In this study, we aim to validate a robust walking detection algorithm using a single foot-worn inertial measurement unit (IMU) in real-life settings. We used a challenging dataset including 18 individuals performing free-living activities. A multi-sensor wearable system including pressure insoles, multiple IMUs, and infrared distance sensors (INDIP) was used as reference. Accurate walking detection was obtained, with sensitivity and specificity of 98 and 91% respectively. As robust walking detection is needed for ambulatory monitoring to complete the processing pipeline from raw recorded data to walking/mobility outcomes, a validated algorithm would pave the way for assessing patient performance and gait quality in real-world conditions.


Assuntos
Marcha , Caminhada , Humanos , , Monitorização Ambulatorial , Algoritmos
4.
Front Physiol ; 13: 814172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222081

RESUMO

Understanding the influence of running-induced acute fatigue on the homeostasis of the body is essential to mitigate the adverse effects and optimize positive adaptations to training. Fatigue is a multifactorial phenomenon, which influences biomechanical, physiological, and psychological facets. This work aimed to assess the evolution of these three facets with acute fatigue during a half-marathon. 13 recreational runners were equipped with one inertial measurement unit (IMU) on each foot, one combined global navigation satellite system-IMU-electrocardiogram sensor on the chest, and an Android smartphone equipped with an audio recording application. Spatio-temporal parameters for the running gait, along with the heart rate, its variability and complexity were computed using validated algorithms. Perceived fatigability was assessed using the rating-of-fatigue (ROF) scale at every 10 min of the race. The data was split into eight equal segments, corresponding to at least one ROF value per segment, and only level running parts were retained for analysis. During the race, contact time, duty factor, and trunk anteroposterior acceleration increased, and the foot strike angle and vertical stiffness decreased significantly. Heart rate showed a progressive increase, while the metrics for heart rate variability and complexity decreased during the race. The biomechanical parameters showed a significant alteration even with a small change in perceived fatigue, whereas the heart rate dynamics altered at higher changes. When divided into two groups, the slower runners presented a higher change in heart rate dynamics throughout the race than the faster runners; they both showed similar trends for the gait parameters. When tested for linear and non-linear correlations, heart rate had the highest association with biomechanical parameters, while the trunk anteroposterior acceleration had the lowest association with heart rate dynamics. These results indicate the ability of faster runners to better judge their physiological limits and hint toward a higher sensitivity of perceived fatigue to neuromuscular changes in the running gait. This study highlights measurable influences of acute fatigue, which can be studied only through concurrent measurement of biomechanical, physiological, and psychological facets of running in real-world conditions.

5.
Front Physiol ; 12: 646042, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512370

RESUMO

Objective: To investigate (i) typical protocols used in research on biomechanical response to running-induced fatigue, (ii) the effect of sport-induced acute fatigue on the biomechanics of running and functional tests, and (iii) the consistency of analyzed parameter trends across different protocols. Methods: Scopus, Web of Science, Pubmed, and IEEE databases were searched using terms identified with the Population, Interest and Context (PiCo) framework. Studies were screened following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and appraised using the methodological index for non-randomized studies MINORS scale. Only experimental studies with at least 10 participants, which evaluated fatigue during and immediately after the fatiguing run were included. Each study was summarized to record information about the protocol and parameter trends. Summary trends were computed for each parameter based on the results found in individual studies. Results: Of the 68 included studies, most were based on in-lab (77.9%) protocols, endpoint measurements (75%), stationary measurement systems (76.5%), and treadmill environment (54.4%) for running. From the 42 parameters identified in response to acute fatigue, flight time, contact time, knee flexion angle at initial contact, trunk flexion angle, peak tibial acceleration, CoP velocity during balance test showed an increasing behavior and cadence, vertical stiffness, knee extension force during MVC, maximum vertical ground reaction forces, and CMJ height showed a decreasing trend across different fatigue protocols. Conclusion: This review presents evidence that running-induced acute fatigue influences almost all the included biomechanical parameters, with crucial influence from the exercise intensity and the testing environment. Results indicate an important gap in literature caused by the lack of field studies with continuous measurement during outdoor running activities. To address this gap, we propose recommendations for the use of wearable inertial sensors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa