Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomolecules ; 11(6)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063883

RESUMO

Obesity and type 2 diabetes mellitus (T2DM) are often combined and pathologically affect many tissues due to changes in circulating bioactive molecules. In this work, we evaluated the effect of blood plasma from obese (OB) patients or from obese patients comorbid with diabetes (OBD) on skeletal muscle function and metabolic state. We employed the mouse myoblasts C2C12 differentiation model to test the regulatory effect of plasma exposure at several levels: (1) cell morphology; (2) functional activity of mitochondria; (3) expression levels of several mitochondria regulators, i.e., Atgl, Pgc1b, and miR-378a-3p. Existing databases were used to computationally predict and analyze mir-378a-3p potential targets. We show that short-term exposure to OB or OBD patients' plasma is sufficient to affect C2C12 properties. In fact, the expression of genes that regulate skeletal muscle differentiation and growth was downregulated in both OB- and OBD-treated cells, maximal mitochondrial respiration rate was downregulated in the OBD group, while in the OB group, a metabolic switch to glycolysis was detected. These alterations correlated with a decrease in ATGL and Pgc1b expression in the OB group and with an increase of miR-378a-3p levels in the OBD group.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus/sangue , Metabolismo Energético/efeitos dos fármacos , MicroRNAs/biossíntese , Mitocôndrias Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , Obesidade/sangue , Plasma , Adulto , Idoso , Animais , Linhagem Celular , Feminino , Humanos , Lipase/biossíntese , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Nucleares/biossíntese , Fatores de Transcrição/biossíntese
2.
Int J Biol Macromol ; 158: 811-818, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32371131

RESUMO

The topical application of ophthalmic drugs is a convenient and safe mode of drug administration. However, the bioavailability of topical drugs in the eye is low due to eye barriers and the rapid removal of the drug from the conjunctival surface by the tear fluid. The aim of this study was to obtain dexamethasone-loaded mucoadhesive self-assembled particles based on a conjugate of succinyl cholesterol with chitosan (SC-CS) for potential use as a topical ocular formulation. SC-CS was obtained via a carbodiimide-mediated coupling reaction (degree of substitution DS 1.2-5.8%). SC-CS in the DS range of 1.2-3.0% can self-organize in solution to form positively charged particles (ζ-potential 20-37 mV) of submicron size (hydrodynamic diameter 700-900 nm). The SC-CS particles show good mucoadhesiveness, which decreases with increasing DS. The obtained particles can encapsulate 159-170 µg/mg dexamethasone; they release about 50% of drug in 2 h, and the cumulative drug release reached 95% in 24 h. A cell model confirmed that dexamethasone-loaded SC-CS particles are non-cytotoxic and exhibit a comparable anti-inflammatory activity to that of pure dexamethasone. Testing the osmotic resistance of erythrocytes showed that both dexamethasone-loaded and non-loaded SC-CS particles have greater membrane-stabilizing ability than that of dexamethasone.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa