Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 153, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430246

RESUMO

BACKGROUND: The standard evolutionary theory of ageing proposes that ageing occurs because of a trade-off between reproduction and longevity. Eusocial insect queens exhibit positive fecundity-longevity associations and so have been suggested to be counter-examples through not expressing costs of reproduction and through remodelling conserved genetic and endocrine networks regulating ageing and reproduction. If so, eusocial evolution from solitary ancestors with negative fecundity-longevity associations must have involved a stage at which costs of reproduction were suppressed and fecundity and longevity became positively associated. Using the bumblebee (Bombus terrestris), we experimentally tested whether queens in annual eusocial insects at an intermediate level of eusocial complexity experience costs of reproduction, and, using mRNA-seq, the extent to which they exhibit a remodelling of relevant genetic and endocrine networks. Specifically, we tested whether costs of reproduction are present but latent, or whether a remodelling of relevant genetic and endocrine networks has already occurred allowing queens to reproduce without costs. RESULTS: We experimentally increased queens' costs of reproduction by removing their eggs, which caused queens to increase their egg-laying rate. Treatment queens had significantly reduced longevity relative to control queens whose egg-laying rate was not increased. Reduced longevity in treatment queens was not caused by increased worker-to-queen aggression or by increased overall activity in queens. In addition, treatment and control queens differed in age-related gene expression based on mRNA-seq in both their overall expression profiles and the expression of ageing-related genes. Remarkably, these differences appeared to occur principally with respect to relative age, not chronological age. CONCLUSIONS: This study represents the first simultaneously phenotypic and transcriptomic experimental test for a longevity cost of reproduction in eusocial insect queens. The results support the occurrence of costs of reproduction in annual eusocial insects of intermediate social complexity and suggest that reproductive costs are present but latent in queens of such species, i.e. that these queens exhibit condition-dependent positive fecundity-longevity associations. They also raise the possibility that a partial remodelling of genetic and endocrine networks underpinning ageing may have occurred in intermediately eusocial species such that, in unmanipulated conditions, age-related gene expression depends more on chronological than relative age.


Assuntos
Fertilidade , Reprodução , Abelhas/genética , Animais , Envelhecimento , Longevidade , RNA Mensageiro
2.
Proc Natl Acad Sci U S A ; 116(7): 2767-2773, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30692254

RESUMO

Arabidopsis thaliana accessions are universally resistant at the adult leaf stage to white rust (Albugo candida) races that infect the crop species Brassica juncea and Brassica oleracea We used transgressive segregation in recombinant inbred lines to test if this apparent species-wide (nonhost) resistance in A. thaliana is due to natural pyramiding of multiple Resistance (R) genes. We screened 593 inbred lines from an Arabidopsis multiparent advanced generation intercross (MAGIC) mapping population, derived from 19 resistant parental accessions, and identified two transgressive segregants that are susceptible to the pathogen. These were crossed to each MAGIC parent, and analysis of resulting F2 progeny followed by positional cloning showed that resistance to an isolate of A. candida race 2 (Ac2V) can be explained in each accession by at least one of four genes encoding nucleotide-binding, leucine-rich repeat (NLR) immune receptors. An additional gene was identified that confers resistance to an isolate of A. candida race 9 (AcBoT) that infects B. oleracea Thus, effector-triggered immunity conferred by distinct NLR-encoding genes in multiple A. thaliana accessions provides species-wide resistance to these crop pathogens.


Assuntos
Arabidopsis/imunologia , Brassica/microbiologia , Oomicetos/patogenicidade , Doenças das Plantas/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Haplótipos , Imunidade Inata , Doenças das Plantas/microbiologia
3.
Mol Ecol ; 30(3): 718-735, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33238067

RESUMO

The queen-worker caste system of eusocial insects represents a prime example of developmental polyphenism (environmentally-induced phenotypic polymorphism) and is intrinsic to the evolution of advanced eusociality. However, the comparative molecular basis of larval caste determination and subsequent differentiation in the eusocial Hymenoptera remains poorly known. To address this issue within bees, we profiled caste-associated gene expression in female larvae of the intermediately eusocial bumblebee Bombus terrestris. In B. terrestris, female larvae experience a queen-dependent period during which their caste fate as adults is determined followed by a nutrition-sensitive period also potentially affecting caste fate but for which the evidence is weaker. We used mRNA-seq and qRT-PCR validation to isolate genes differentially expressed between each caste pathway in larvae at developmental stages before and after each of these periods. We show that differences in gene expression between caste pathways are small in totipotent larvae, then peak after the queen-dependent period. Relatively few novel (i.e., taxonomically-restricted) genes were differentially expressed between castes, though novel genes were significantly enriched in late-instar larvae in the worker pathway. We compared sets of caste-associated genes in B. terrestris with those reported from the advanced eusocial honeybee, Apis mellifera, and found significant but relatively low levels of overlap of gene lists between the two species. These results suggest both the existence of low numbers of shared toolkit genes and substantial divergence in caste-associated genes between Bombus and the advanced eusocial Apis since their last common eusocial ancestor.


Assuntos
Abelhas , Comportamento Animal , Perfilação da Expressão Gênica , Animais , Abelhas/genética , Feminino , Expressão Gênica , Larva/genética
4.
Cell Microbiol ; 19(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27302335

RESUMO

The oomycete pathogen Phytophthora infestans causes potato late blight, and as a potato and tomato specialist pathogen, is seemingly poorly adapted to infect plants outside the Solanaceae. Here, we report the unexpected finding that P. infestans can infect Arabidopsis thaliana when another oomycete pathogen, Albugo laibachii, has colonized the host plant. The behaviour and speed of P. infestans infection in Arabidopsis pre-infected with A. laibachii resemble P. infestans infection of susceptible potato plants. Transcriptional profiling of P. infestans genes during infection revealed a significant overlap in the sets of secreted-protein genes that are induced in P. infestans upon colonization of potato and susceptible Arabidopsis, suggesting major similarities in P. infestans gene expression dynamics on the two plant species. Furthermore, we found haustoria of A. laibachii and P. infestans within the same Arabidopsis cells. This Arabidopsis-A. laibachii-P. infestans tripartite interaction opens up various possibilities to dissect the molecular mechanisms of P. infestans infection and the processes occurring in co-infected Arabidopsis cells.


Assuntos
Arabidopsis/microbiologia , Interações Microbianas , Oomicetos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Oomicetos/genética , Solanum tuberosum/microbiologia
5.
BMC Biol ; 15(1): 20, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28320402

RESUMO

BACKGROUND: Plants are exposed to diverse pathogens and pests, yet most plants are resistant to most plant pathogens. Non-host resistance describes the ability of all members of a plant species to successfully prevent colonization by any given member of a pathogen species. White blister rust caused by Albugo species can overcome non-host resistance and enable secondary infection and reproduction of usually non-virulent pathogens, including the potato late blight pathogen Phytophthora infestans on Arabidopsis thaliana. However, the molecular basis of host defense suppression in this complex plant-microbe interaction is unclear. Here, we investigate specific defense mechanisms in Arabidopsis that are suppressed by Albugo infection. RESULTS: Gene expression profiling revealed that two species of Albugo upregulate genes associated with tryptophan-derived antimicrobial metabolites in Arabidopsis. Albugo laibachii-infected tissue has altered levels of these metabolites, with lower indol-3-yl methylglucosinolate and higher camalexin accumulation than uninfected tissue. We investigated the contribution of these Albugo-imposed phenotypes to suppression of non-host resistance to P. infestans. Absence of tryptophan-derived antimicrobial compounds enables P. infestans colonization of Arabidopsis, although to a lesser extent than Albugo-infected tissue. A. laibachii also suppresses a subset of genes regulated by salicylic acid; however, salicylic acid plays only a minor role in non-host resistance to P. infestans. CONCLUSIONS: Albugo sp. alter tryptophan-derived metabolites and suppress elements of the responses to salicylic acid in Arabidopsis. Albugo sp. imposed alterations in tryptophan-derived metabolites may play a role in Arabidopsis non-host resistance to P. infestans. Understanding the basis of non-host resistance to pathogens such as P. infestans could assist in development of strategies to elevate food security.


Assuntos
Anti-Infecciosos/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Vias Biossintéticas , Resistência à Doença/imunologia , Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Triptofano/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Biomassa , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Brassica/microbiologia , Resistência à Doença/efeitos dos fármacos , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes de Plantas , Glucosinolatos/metabolismo , Indóis/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Mutação/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Reprodutibilidade dos Testes , Ácido Salicílico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tiazóis/metabolismo , Regulação para Cima/efeitos dos fármacos
6.
Plant Physiol ; 164(4): 2207-19, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24586042

RESUMO

The importance of pathogen-associated molecular pattern-triggered immunity (PTI) against microbial pathogens has been recently demonstrated. However, it is currently unclear if this layer of immunity mediated by surface-localized pattern recognition receptors (PRRs) also plays a role in basal resistance to insects, such as aphids. Here, we show that PTI is an important component of plant innate immunity to insects. Extract of the green peach aphid (GPA; Myzus persicae) triggers responses characteristic of PTI in Arabidopsis (Arabidopsis thaliana). Two separate eliciting GPA-derived fractions trigger induced resistance to GPA that is dependent on the leucine-rich repeat receptor-like kinase BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1)/SOMATIC-EMBRYOGENESIS RECEPTOR-LIKE KINASE3, which is a key regulator of several leucine-rich repeat-containing PRRs. BAK1 is required for GPA elicitor-mediated induction of reactive oxygen species and callose deposition. Arabidopsis bak1 mutant plants are also compromised in immunity to the pea aphid (Acyrthosiphon pisum), for which Arabidopsis is normally a nonhost. Aphid-derived elicitors induce expression of PHYTOALEXIN DEFICIENT3 (PAD3), a key cytochrome P450 involved in the biosynthesis of camalexin, which is a major Arabidopsis phytoalexin that is toxic to GPA. PAD3 is also required for induced resistance to GPA, independently of BAK1 and reactive oxygen species production. Our results reveal that plant innate immunity to insects may involve early perception of elicitors by cell surface-localized PRRs, leading to subsequent downstream immune signaling.


Assuntos
Afídeos/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Sistema Enzimático do Citocromo P-450/metabolismo , Imunidade Inata , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/metabolismo , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/parasitologia , Resistência à Doença/imunologia , Endopeptidase K/farmacologia , Proteínas de Repetições Ricas em Leucina , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Receptores de Reconhecimento de Padrão/metabolismo
7.
Methods Mol Biol ; 2630: 1-11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36689172

RESUMO

MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression. They play an important role in many biological processes including human diseases. However, miRNAs are challenging to detect due to their short sequence length and low copy number. A number of conventional (e.g., Northern blot, microarray, and RT-qPCR) and emerging (e.g., nanostructured materials and electrochemical methods) techniques have been developed to detect miRNA, each with their own strengths and weaknesses. Some of these techniques have been combined to detect miRNAs as disease biomarkers in point-of-care (POC) settings. Nonetheless, there is still potential for further innovation to facilitate the detection of miRNAs.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Northern Blotting , Técnicas Eletroquímicas
8.
J Gerontol A Biol Sci Med Sci ; 78(12): 2240-2250, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584665

RESUMO

The standard evolutionary theory of aging predicts a negative relationship (trade-off) between fecundity and longevity. However, in principle, the fecundity-longevity relationship can become positive in populations in which individuals have unequal resources. Positive fecundity-longevity relationships also occur in queens of eusocial insects such as ants and bees. Developmental diet is likely to be central to determining trade-offs as it affects key fitness traits, but its exact role remains uncertain. For example, in Drosophila melanogaster, changes in adult diet can affect fecundity, longevity, and gene expression throughout life, but it is unknown how changes in developmental (larval) diet affect fecundity-longevity relationships and gene expression in adults. Using D. melanogaster, we tested the hypothesis that varying developmental diets alters the directionality of fecundity-longevity relationships in adults, and characterized associated gene expression changes. We reared larvae on low (20%), medium (100%), and high (120%) yeast diets, and transferred adult females to a common diet. We measured fecundity and longevity of individual adult females and profiled gene expression changes with age. Adult females raised on different larval diets exhibited fecundity-longevity relationships that varied from significantly positive to significantly negative, despite minimal differences in mean lifetime fertility or longevity. Treatments also differed in age-related gene expression, including for aging-related genes. Hence, the sign of fecundity-longevity relationships in adult insects can be altered and even reversed by changes in larval diet quality. By extension, larval diet differences may represent a key mechanistic factor underpinning positive fecundity-longevity relationships observed in species such as eusocial insects.


Assuntos
Drosophila melanogaster , Fertilidade , Feminino , Abelhas/genética , Animais , Drosophila melanogaster/genética , Longevidade/genética , Dieta , Larva , Saccharomyces cerevisiae , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa