Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA Biol ; 13(3): 320-30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26821976

RESUMO

A rapidly increasing number of RNA helicases are implicated in several distinct cellular processes, however, the modes of regulation of multifunctional RNA helicases and their recruitment to different target complexes have remained unknown. Here, we show that the distribution of the multifunctional DEAH-box RNA helicase Prp43 between its diverse cellular functions can be regulated by the interplay of its G-patch protein cofactors. We identify the orphan G-patch protein Cmg1 (YLR271W) as a novel cofactor of Prp43 and show that it stimulates the RNA binding and ATPase activity of the helicase. Interestingly, Cmg1 localizes to the cytoplasm and to the intermembrane space of mitochondria and its overexpression promotes apoptosis. Furthermore, our data reveal that different G-patch protein cofactors compete for interaction with Prp43. Changes in the expression levels of Prp43-interacting G-patch proteins modulate the cellular localization of Prp43 and G-patch protein overexpression causes accumulation of the helicase in the cytoplasm or nucleoplasm. Overexpression of several G-patch proteins also leads to defects in ribosome biogenesis that are consistent with withdrawal of the helicase from this pathway. Together, these findings suggest that the availability of cofactors and the sequestering of the helicase are means to regulate the activity of multifunctional RNA helicases and their distribution between different cellular processes.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Apoptose , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação Fúngica da Expressão Gênica , Membranas Mitocondriais/metabolismo , Transdução de Sinais
2.
RNA ; 19(7): 902-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23685439

RESUMO

Step 2 catalysis of pre-mRNA splicing entails the excision of the intron and ligation of the 5' and 3' exons. The tasks of the splicing factors Prp16, Slu7, Prp18, and Prp22 in the formation of the step 2 active site of the spliceosome and in exon ligation, and the timing of their recruitment, remain poorly understood. Using a purified yeast in vitro splicing system, we show that only the DEAH-box ATPase Prp16 is required for formation of a functional step 2 active site and for exon ligation. Efficient docking of the 3' splice site (3'SS) to the active site requires only Slu7/Prp18 but not Prp22. Spliceosome remodeling by Prp16 appears to be subtle as only the step 1 factor Cwc25 is dissociated prior to step 2 catalysis, with its release dependent on docking of the 3'SS to the active site and Prp16 action. We show by fluorescence cross-correlation spectroscopy that Slu7/Prp18 and Prp16 bind early to distinct, low-affinity binding sites on the step-1-activated B* spliceosome, which are subsequently converted into high-affinity sites. Our results shed new light on the factor requirements for step 2 catalysis and the dynamics of step 1 and 2 factors during the catalytic steps of splicing.


Assuntos
Splicing de RNA , RNA Fúngico/metabolismo , Spliceossomos/metabolismo , Leveduras/genética , Catálise , Domínio Catalítico , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Éxons , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Sítios de Splice de RNA , RNA Fúngico/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espectrometria de Fluorescência , Spliceossomos/genética , Leveduras/metabolismo
3.
RNA ; 18(6): 1244-56, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22535589

RESUMO

The compositional and conformational changes during catalytic activation of the spliceosome promoted by the DEAH box ATPase Prp2 are only poorly understood. Here, we show by dual-color fluorescence cross-correlation spectroscopy (dcFCCS) that the binding affinity of several proteins is significantly changed during the Prp2-mediated transition of precatalytic B(act) spliceosomes to catalytically activated B* spliceosomes from Saccharomyces cerevisiae. During this step, several proteins, including the zinc-finger protein Cwc24, are quantitatively displaced from the B* complex. Consistent with this, we show that Cwc24 is required for step 1 but not for catalysis per se. The U2-associated SF3a and SF3b proteins Prp11 and Cus1 remain bound to the B* spliceosome under near-physiological conditions, but their binding is reduced at high salt. Conversely, high-affinity binding sites are created for Yju2 and Cwc25 during catalytic activation, consistent with their requirement for step 1 catalysis. Our results suggest high cooperativity of multiple Prp2-mediated structural rearrangements at the spliceosome's catalytic core. Moreover, dcFCCS represents a powerful tool ideally suited to study quantitatively spliceosomal protein dynamics in equilibrium.


Assuntos
RNA Helicases DEAD-box/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Spliceossomos/química , Domínio Catalítico , Ligação Proteica , Espectrometria de Fluorescência/métodos
4.
ACS Nano ; 9(7): 7360-73, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26144863

RESUMO

Dual-focus fluorescence correlation spectroscopy (2fFCS) is a versatile method to determine accurate diffusion coefficients of fluorescent species in an absolute, reference-free manner. Whereas (either classical or dual-focus) FCS has been employed primarily in the life sciences and thus in aqueous environments, it is increasingly being used in materials chemistry, as well. These measurements are often performed in nonaqueous media such as organic solvents. However, the diffusion coefficients of reference dyes in organic solvents are not readily available. For this reason we determined the translational diffusion coefficients of several commercially available organosoluble fluorescent dyes by means of 2fFCS. The selected dyes and organic solvents span the visible spectrum and a broad range of refractive indices, respectively. The diffusion coefficients can be used as absolute reference values for the calibration of experimental FCS setups, allowing quantitative measurements to be performed. We show that reliable information about the hydrodynamic dimensions of the fluorescent species (including noncommercial compounds) within organic media can be extracted from the 2fFCS data.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa