Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Infect Dis ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38736232

RESUMO

BACKGROUND: The extent to which infections may have been undetected in an epicenter of the 2022 mpox outbreak is unknown. METHODS: A serosurvey (July and August 2022) assessed the seroprevalence and correlates of mpox infection among a diverse sample of asymptomatic patients with no prior mpox diagnoses and no known histories of smallpox or mpox vaccination. We present seropositivity stratified by participant characteristics collected via survey. RESULTS: Two-thirds of 419 participants were cismen (281 of 419), of whom 59.1% (166 of 281) reported sex with men (MSM). The sample also included 109 ciswomen and 28 transgender/gender nonconforming/nonbinary individuals. Overall seroprevalence was 6.4% (95% confidence interval [CI], 4.1%-8.8%); 3.7% among ciswomen (95% CI, 1.0%-9.1%), 7.0% among cismen with only ciswomen partners (95% CI, 2.0%-11.9%), and 7.8% among MSM (95% CI, 3.7%-11.9%). There was little variation in seroprevalence by race/ethnicity, age group, HIV status, or number of recent sex partners. No participants who reported close contact with mpox cases were seropositive. Among participants without recent mpox-like symptoms, 6.3% were seropositive (95% CI, 3.6%-9.0%). CONCLUSIONS: Approximately 1 in 15 vaccine-naive people in our study had antibodies to mpox during the height of the NYC outbreak, indicating the presence of asymptomatic infections that could contribute to ongoing transmission.

2.
PLoS Pathog ; 18(10): e1010662, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215331

RESUMO

We have recently shown that the replication of rhinovirus, poliovirus and foot-and-mouth disease virus requires the co-translational N-myristoylation of viral proteins by human host cell N-myristoyltransferases (NMTs), and is inhibited by treatment with IMP-1088, an ultrapotent small molecule NMT inhibitor. Here, we examine the importance of N-myristoylation during vaccinia virus (VACV) infection in primate cells and demonstrate the anti-poxviral effects of IMP-1088. N-myristoylated proteins from VACV and the host were metabolically labelled with myristic acid alkyne during infection using quantitative chemical proteomics. We identified VACV proteins A16, G9 and L1 to be N-myristoylated. Treatment with NMT inhibitor IMP-1088 potently abrogated VACV infection, while VACV gene expression, DNA replication, morphogenesis and EV formation remained unaffected. Importantly, we observed that loss of N-myristoylation resulted in greatly reduced infectivity of assembled mature virus particles, characterized by significantly reduced host cell entry and a decline in membrane fusion activity of progeny virus. While the N-myristoylation of VACV entry proteins L1, A16 and G9 was inhibited by IMP-1088, mutational and genetic studies demonstrated that the N-myristoylation of L1 was the most critical for VACV entry. Given the significant genetic identity between VACV, monkeypox virus and variola virus L1 homologs, our data provides a basis for further investigating the role of N-myristoylation in poxviral infections as well as the potential of selective NMT inhibitors like IMP-1088 as broad-spectrum poxvirus inhibitors.


Assuntos
Vaccinia virus , Vacínia , Animais , Humanos , Alcinos , Ácido Mirístico/metabolismo , Vacínia/metabolismo , Vaccinia virus/genética , Proteínas Virais/metabolismo , Vírion/metabolismo , Internalização do Vírus
3.
Clin Infect Dis ; 77(2): 298-302, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-36916132

RESUMO

We assessed mpox virus prevalence in blood, pharyngeal, and rectal specimens among persons without characteristic rash presenting for JYNNEOS vaccine. Our data indicate that the utility of risk-based screening for mpox in persons without skin lesions or rash via pharyngeal swabs, rectal swabs, and/or blood is likely limited.


Assuntos
Exantema , Mpox , Viroses , Humanos , District of Columbia , Exantema/etiologia , Vacinas Atenuadas
4.
Emerg Infect Dis ; 29(11): 2307-2314, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37832516

RESUMO

Since May 2022, mpox has been identified in 108 countries without endemic disease; most cases have been in gay, bisexual, or other men who have sex with men. To determine number of missed cases, we conducted 2 studies during June-September 2022: a prospective serologic survey detecting orthopoxvirus antibodies among men who have sex with men in San Francisco, California, and a retrospective monkeypox virus PCR testing of swab specimens submitted for other infectious disease testing among all patients across the United States. The serosurvey of 225 participants (median age 34 years) detected 18 (8.0%) who were orthopoxvirus IgG positive and 3 (1.3%) who were also orthopoxvirus IgM positive. The retrospective PCR study of 1,196 patients (median age 30 years; 54.8% male) detected 67 (5.6%) specimens positive for monkeypox virus. There are likely few undiagnosed cases of mpox in regions where sexual healthcare is accessible and patient and clinician awareness about mpox is increased.


Assuntos
Mpox , Orthopoxvirus , Minorias Sexuais e de Gênero , Humanos , Masculino , Estados Unidos/epidemiologia , Adulto , Feminino , Monkeypox virus/genética , Mpox/diagnóstico , Mpox/epidemiologia , Prevalência , Homossexualidade Masculina , Estudos Prospectivos , Estudos Retrospectivos , Surtos de Doenças
5.
Proc Natl Acad Sci U S A ; 113(28): 7852-7, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27354515

RESUMO

Zika virus (ZIKV) is an emerging mosquito-borne flavivirus of significant public health concern. ZIKV shares a high degree of sequence and structural homology compared with other flaviviruses, including dengue virus (DENV), resulting in immunological cross-reactivity. Improving our current understanding of the extent and characteristics of this immunological cross-reactivity is important, as ZIKV is presently circulating in areas that are highly endemic for dengue. To assess the magnitude and functional quality of cross-reactive immune responses between these closely related viruses, we tested acute and convalescent sera from nine Thai patients with PCR-confirmed DENV infection against ZIKV. All of the sera tested were cross-reactive with ZIKV, both in binding and in neutralization. To deconstruct the observed serum cross-reactivity in depth, we also characterized a panel of DENV-specific plasmablast-derived monoclonal antibodies (mAbs) for activity against ZIKV. Nearly half of the 47 DENV-reactive mAbs studied bound to both whole ZIKV virion and ZIKV lysate, of which a subset also neutralized ZIKV. In addition, both sera and mAbs from the dengue-infected patients enhanced ZIKV infection of Fc gamma receptor (FcγR)-bearing cells in vitro. Taken together, these findings suggest that preexisting immunity to DENV may impact protective immune responses against ZIKV. In addition, the extensive cross-reactivity may have implications for ZIKV virulence and disease severity in DENV-experienced populations.


Assuntos
Formação de Anticorpos , Vírus da Dengue/imunologia , Dengue/imunologia , Zika virus/imunologia , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Reações Cruzadas , Humanos , Monócitos/virologia , Testes de Neutralização , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia
6.
J Infect Dis ; 216(suppl_10): S906-S911, 2017 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-29267924

RESUMO

The recent emergence of Zika virus (ZIKV) in the western hemisphere has been linked to Guillain-Barre syndrome, congenital microcephaly, and devastating ophthalmologic and neurologic developmental abnormalities. The vast geographic spread and adverse disease outcomes of the 2015-2016 epidemic have elevated ZIKV from a previously understudied virus to one of substantial public health interest worldwide. Recent efforts to dissect immunological responses to ZIKV have provided significant insights into the functional quality and antigenic targets of ZIKV-induced B-cell responses. Several groups have demonstrated immunological cross-reactivity between ZIKV and other flaviviruses and have identified antibodies capable of both cross-neutralization, as well as antibody-dependent enhancement (ADE) of ZIKV infection. However, the impact of preexisting flavivirus immunity on ZIKV pathogenesis, the generation of protective responses, and in utero transmission of ZIKV infection remain unclear. Given the widespread endemicity of DENV in the areas most effected by the current ZIKV outbreak, the possibility of ADE is especially concerning and may pose unique challenges to the development and deployment of safe and immunogenic ZIKV vaccines. Here, we review current literature pertaining to ZIKV-induced B-cell responses and humoral cross-reactivity and discuss relevant considerations for the development of vaccines and therapeutics against ZIKV.


Assuntos
Flavivirus/imunologia , Imunidade Humoral , Vacinas Virais , Infecção por Zika virus/imunologia , Zika virus/imunologia , Anticorpos Facilitadores , Linfócitos B/imunologia , Reações Cruzadas , Humanos , Zika virus/fisiologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia
7.
J Virol ; 90(12): 5574-85, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27030262

RESUMO

UNLABELLED: Dengue virus (DENV) infection results in the production of both type-specific and cross-neutralizing antibodies. While immunity to the infecting serotype is long-lived, heterotypic immunity wanes a few months after infection. Epidemiological studies link secondary heterotypic infections with more severe symptoms, and cross-reactive, poorly neutralizing antibodies have been implicated in this increased disease severity. To understand the cellular and functional properties of the acute dengue virus B cell response and its role in protection and immunopathology, we characterized the plasmablast response in four secondary DENV type 2 (DENV2) patients. Dengue plasmablasts had high degrees of somatic hypermutation, with a clear preference for replacement mutations. Clonal expansions were also present in each donor, strongly supporting a memory origin for these acutely induced cells. We generated 53 monoclonal antibodies (MAbs) from sorted patient plasmablasts and found that DENV-reactive MAbs were largely envelope specific and cross neutralizing. Many more MAbs neutralized DENV than reacted to envelope protein, emphasizing the significance of virion-dependent B cell epitopes and the limitations of envelope protein-based antibody screening. A majority of DENV-reactive MAbs, irrespective of neutralization potency, enhanced infection by antibody-dependent enhancement (ADE). Interestingly, even though DENV2 was the infecting serotype in all four patients, several MAbs from two patients neutralized DENV1 more potently than DENV2. Further, half of all type-specific neutralizing MAbs were also DENV1 biased in binding. Taken together, these findings are reminiscent of original antigenic sin (OAS), given that the patients had prior dengue virus exposures. These data describe the ongoing B cell response in secondary patients and may further our understanding of the impact of antibodies in dengue virus pathogenesis. IMPORTANCE: In addition to their role in protection, antibody responses have been hypothesized to contribute to the pathology of dengue. Recent studies characterizing memory B cell (MBC)-derived MAbs have provided valuable insight into the targets and functions of B cell responses generated after DENV exposure. However, in the case of secondary infections, such MBC-based approaches fail to distinguish acutely induced cells from the preexisting MBC pool. Our characterization of plasmablasts and plasmablast-derived MAbs provides a focused analysis of B cell responses activated during ongoing infection. Additionally, our studies provide evidence of OAS in the acute-phase dengue virus immune response, providing a basis for future work examining the impact of OAS phenotype antibodies on protective immunity and disease severity in secondary infections.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Reações Cruzadas , Vírus da Dengue/imunologia , Dengue/imunologia , Memória Imunológica , Adolescente , Adulto , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Facilitadores , Dengue/fisiopatologia , Dengue/virologia , Epitopos de Linfócito B , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Plasmócitos/imunologia , Sorogrupo , Proteínas do Envelope Viral/imunologia , Adulto Jovem
8.
PLoS Pathog ; 11(5): e1004858, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25996913

RESUMO

Immunity to non-cerebral severe malaria is estimated to occur within 1-2 infections in areas of endemic transmission for Plasmodium falciparum. Yet, nearly 20% of infected children die annually as a result of severe malaria. Multiple risk factors are postulated to exacerbate malarial disease, one being co-infections with other pathogens. Children living in Sub-Saharan Africa are seropositive for Epstein Barr Virus (EBV) by the age of 6 months. This timing overlaps with the waning of protective maternal antibodies and susceptibility to primary Plasmodium infection. However, the impact of acute EBV infection on the generation of anti-malarial immunity is unknown. Using well established mouse models of infection, we show here that acute, but not latent murine gammaherpesvirus 68 (MHV68) infection suppresses the anti-malarial humoral response to a secondary malaria infection. Importantly, this resulted in the transformation of a non-lethal P. yoelii XNL infection into a lethal one; an outcome that is correlated with a defect in the maintenance of germinal center B cells and T follicular helper (Tfh) cells in the spleen. Furthermore, we have identified the MHV68 M2 protein as an important virus encoded protein that can: (i) suppress anti-MHV68 humoral responses during acute MHV68 infection; and (ii) plays a critical role in the observed suppression of anti-malarial humoral responses in the setting of co-infection. Notably, co-infection with an M2-null mutant MHV68 eliminates lethality of P. yoelii XNL. Collectively, our data demonstrates that an acute gammaherpesvirus infection can negatively impact the development of an anti-malarial immune response. This suggests that acute infection with EBV should be investigated as a risk factor for non-cerebral severe malaria in young children living in areas endemic for Plasmodium transmission.


Assuntos
Coinfecção/imunologia , Infecções por Herpesviridae/imunologia , Herpesviridae/imunologia , Imunidade Humoral/imunologia , Malária/imunologia , Malária/virologia , Animais , Diferenciação Celular/imunologia , Feminino , Camundongos Endogâmicos C57BL , Ativação Viral/imunologia , Latência Viral/imunologia
9.
PLoS Pathog ; 9(6): e1003421, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23785286

RESUMO

Reassortment is fundamental to the evolution of influenza viruses and plays a key role in the generation of epidemiologically significant strains. Previous studies indicate that reassortment is restricted by segment mismatch, arising from functional incompatibilities among components of two viruses. Additional factors that dictate the efficiency of reassortment remain poorly characterized. Thus, it is unclear what conditions are favorable for reassortment and therefore under what circumstances novel influenza A viruses might arise in nature. Herein, we describe a system for studying reassortment in the absence of segment mismatch and exploit this system to determine the baseline efficiency of reassortment and the effects of infection dose and timing. Silent mutations were introduced into A/Panama/2007/99 virus such that high-resolution melt analysis could be used to differentiate all eight segments of the wild-type and the silently mutated variant virus. The use of phenotypically identical parent viruses ensured that all progeny were equally fit, allowing reassortment to be measured without selection bias. Using this system, we found that reassortment occurred efficiently (88.4%) following high multiplicity infection, suggesting the process is not appreciably limited by intracellular compartmentalization. That co-infection is the major determinant of reassortment efficiency in the absence of segment mismatch was confirmed with the observation that the proportion of viruses with reassortant genotypes increased exponentially with the proportion of cells co-infected. The number of reassortants shed from co-infected guinea pigs was likewise dependent on dose. With 106 PFU inocula, 46%-86% of viruses isolated from guinea pigs were reassortants. The introduction of a delay between infections also had a strong impact on reassortment and allowed definition of time windows during which super-infection led to reassortment in culture and in vivo. Overall, our results indicate that reassortment between two like influenza viruses is efficient but also strongly dependent on dose and timing of the infections.


Assuntos
Genótipo , Vírus da Influenza A/genética , Mutação , Infecções por Orthomyxoviridae/genética , Análise de Sequência de RNA , Superinfecção/genética , Animais , Cães , Feminino , Cobaias , Humanos , Células Madin Darby de Rim Canino
10.
Vaccine ; 42(19): 4056-4065, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38762357

RESUMO

We assessed early antibody responses after two doses of JYNNEOS (IMVANEX) mpox vaccine in the District of Columbia (D.C.) in persons at high risk for mpox without characteristic lesions or rash. Participants with PCR mpox negative specimens (oral swab, blood, and/or rectal swab) on the day of receipt of the first vaccine dose and who provided a baseline (day 0) serum sample and at least one serum sample at âˆ¼28, ∼42-56 days, or 180 days post vaccination were included in this analysis. Orthopoxvirus (OPXV)-specific IgG and IgM ELISAs and neutralizing antibody titers were performed, and longitudinal serologic responses were examined. Based on participants' IgG and IgM antibody levels at baseline, they were categorized as naïve or non-naïve. Linear mixed effects regression models were conducted to determine if IgG antibody response over time varied by age, sex, HIV status, and route of administration for both naïve and non-naïve participants. Among both naïve and non-naïve participants IgG seropositivity rates increased until day 42-56, with 89.4 % of naïve and 92.1 % of non-naïve participants having detectable IgG antibodies. The proportion of naive participants with detectable IgG antibodies declined by day 180 (67.7 %) but remained high among non-naïve participants (94.4 %). Neutralizing antibody titers displayed a similar pattern, increasing initially post vaccination but declining by day 180 among naïve participants. There were no significant serologic response differences by age, sex, or HIV status. Serologic response did vary by route of vaccine administration, with those receiving a combination of intradermal and subcutaneous doses displaying significantly higher IgG values than those receiving both doses intradermally. These analyses provide initial insights into the immunogenicity of a two-dose JYNNEOS PEP regimen in individuals at high risk of mpox exposure in the United States.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Imunoglobulina G , Imunoglobulina M , Humanos , Masculino , Feminino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Imunoglobulina G/sangue , Adulto , Anticorpos Neutralizantes/sangue , Pessoa de Meia-Idade , Adulto Jovem , Imunoglobulina M/sangue , Vacina Antivariólica/imunologia , Vacina Antivariólica/administração & dosagem , Adolescente , Orthopoxvirus/imunologia , Vacínia/imunologia , Vacinação/métodos , Estudos de Coortes
11.
Nat Med ; 30(3): 670-674, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321219

RESUMO

Dengue is a global epidemic causing over 100 million cases annually. The clinical symptoms range from mild fever to severe hemorrhage and shock, including some fatalities. The current paradigm is that these severe dengue cases occur mostly during secondary infections due to antibody-dependent enhancement after infection with a different dengue virus serotype. India has the highest dengue burden worldwide, but little is known about disease severity and its association with primary and secondary dengue infections. To address this issue, we examined 619 children with febrile dengue-confirmed infection from three hospitals in different regions of India. We classified primary and secondary infections based on IgM:IgG ratios using a dengue-specific enzyme-linked immunosorbent assay according to the World Health Organization guidelines. We found that primary dengue infections accounted for more than half of total clinical cases (344 of 619), severe dengue cases (112 of 202) and fatalities (5 of 7). Consistent with the classification based on binding antibody data, dengue neutralizing antibody titers were also significantly lower in primary infections compared to secondary infections (P ≤ 0.0001). Our findings question the currently widely held belief that severe dengue is associated predominantly with secondary infections and emphasizes the importance of developing vaccines or treatments to protect dengue-naive populations.


Assuntos
Coinfecção , Vírus da Dengue , Dengue , Dengue Grave , Humanos , Criança , Dengue/epidemiologia , Dengue Grave/epidemiologia , Anticorpos Antivirais , Coinfecção/epidemiologia , Febre
12.
Antiviral Res ; 216: 105651, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37270160

RESUMO

Many poxviruses are significant human and animal pathogens, including viruses that cause smallpox and mpox (formerly monkeypox). Identifying novel and potent antiviral compounds is critical to successful drug development targeting poxviruses. Here we tested two compounds, nucleoside trifluridine, and nucleotide adefovir dipivoxil, for antiviral activities against vaccinia virus (VACV), mpox virus (MPXV), and cowpox virus (CPXV) in physiologically relevant primary human fibroblasts. Both compounds potently inhibited the replication of VACV, CPXV, and MPXV (MA001 2022 isolate) in plaque assays. In our recently developed assay based on a recombinant VACV expressing secreted Gaussia luciferase, they both exhibited high potency in inhibiting VACV replication with EC50s in the low nanomolar range. In addition, both trifluridine and adefovir dipivoxil inhibited VACV DNA replication and downstream viral gene expression. Our results characterized trifluridine and adefovir dipivoxil as strong poxvirus antiviral compounds and further validate the VACV Gaussia luciferase assay as a highly efficient and reliable reporter tool for identifying poxvirus inhibitors. Given that both compounds are FDA-approved drugs, and trifluridine is already used to treat ocular vaccinia, further development of trifluridine and adefovir dipivoxil holds great promise in treating poxvirus infections, including mpox.


Assuntos
Mpox , Poxviridae , Vacínia , Animais , Humanos , Vaccinia virus/fisiologia , Vacínia/tratamento farmacológico , Vírus da Varíola Bovina , Antivirais/farmacologia , Antivirais/metabolismo , Trifluridina/metabolismo , Linhagem Celular , Poxviridae/metabolismo
13.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993701

RESUMO

Many poxviruses are significant human and animal pathogens, including viruses that cause smallpox and mpox. Identification of inhibitors of poxvirus replication is critical for drug development to manage poxvirus threats. Here we tested two compounds, nucleoside trifluridine and nucleotide adefovir dipivoxil, for antiviral activities against vaccinia virus (VACV) and mpox virus (MPXV) in physiologically relevant primary human fibroblasts. Both trifluridine and adefovir dipivoxil potently inhibited replication of VACV and MPXV (MA001 2022 isolate) in a plaque assay. Upon further characterization, they both conferred high potency in inhibiting VACV replication with half maximal effective concentrations (EC 50 ) at low nanomolar levels in our recently developed assay based on a recombinant VACV secreted Gaussia luciferase. Our results further validated that the recombinant VACV with Gaussia luciferase secretion is a highly reliable, rapid, non-disruptive, and simple reporter tool for identification and chracterization of poxvirus inhibitors. Both compounds inhibited VACV DNA replication and downstream viral gene expression. Given that both compounds are FDA-approved drugs, and trifluridine is used to treat ocular vaccinia in medical practice due to its antiviral activity, our results suggest that it holds great promise to further test trifluridine and adefovir dipivoxil for countering poxvirus infection, including mpox.

14.
Vaccine ; 40(50): 7321-7327, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36344361

RESUMO

The current worldwide monkepox outbreak has reaffirmed the continued threat monkeypox virus (MPXV) poses to public health. JYNNEOS, a Modified Vaccinia Ankara (MVA)-based live, non-replicating vaccine, was recently approved for monkeypox prevention for adults at high risk of MPXV infection in the United States. Although the safety and immunogenicity of JYNNEOS have been examined previously, the clinical cohorts studied largely derive from regions where MPXV does not typically circulate. In this study, we assess the quality and longevity of serological responses to two doses of JYNNEOS vaccine in a large cohort of healthcare workers from the Democratic Republic of Congo (DRC). We show that JYNNEOS elicits a strong orthopoxvirus (OPXV)-specific antibody response in participants that peaks around day 42, or 2 weeks after the second vaccine dose. Participants with no prior history of smallpox vaccination or exposure have lower baseline antibody levels, but experience a similar fold-rise in antibody titers by day 42 as those with a prior history of vaccination. Both previously naïve and vaccinated participants generate vaccinia virus and MPXV-neutralizing antibody in response to JYNNEOS vaccination. Finally, even though total OPXV-specific IgG titers and neutralizing antibody titers declined from their peak and returned close to baseline levels by the 2-year mark, most participants remain IgG seropositive at the 2-year timepoint. Taken together, our data demonstrates that JYNNEOS vaccination triggers potent OPXV neutralizing antibody responses in a cohort of healthcare workers in DRC, a monkeypox-endemic region. MPXV vaccination with JYNNEOS may help ameliorate the disease and economic burden associated with monkeypox and combat potential outbreaks in areas with active virus circulation.


Assuntos
Mpox , Orthopoxvirus , Vacina Antivariólica , Vacínia , Humanos , Adulto , Vaccinia virus , Mpox/epidemiologia , Mpox/prevenção & controle , República Democrática do Congo/epidemiologia , Monkeypox virus , Anticorpos Neutralizantes , Imunoglobulina G
15.
Antiviral Res ; 191: 105086, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33992710

RESUMO

Decades after the eradication of smallpox and the discontinuation of routine smallpox vaccination, over half of the world's population is immunologically naïve to variola virus and other orthopoxviruses (OPXVs). Even in those previously vaccinated against smallpox, protective immunity wanes over time. As such, there is a concomitant increase in the incidence of human OPXV infections worldwide. To identify novel antiviral compounds with potent anti-OPXV potential, we characterized the inhibitory activity of PAV-866 and other methylene blue derivatives against the prototypic poxvirus, vaccinia virus (VACV). These compounds inactivated virions prior to infection and consequently inhibited viral binding, fusion and entry. The compounds exhibited strong virucidal activity at non-cytotoxic concentrations, and inhibited VACV infection when added before, during or after viral adsorption. The compounds were effective against other OPXVs including monkeypox virus, cowpox virus and the newly identified Akhmeta virus. Altogether, these findings reveal a novel mode of inhibition that has not previously been demonstrated for small molecule compounds against VACV. Additional studies are in progress to determine the in vivo efficacy of these compounds against OPXVs and further characterize the anti-viral effects of these derivatives.


Assuntos
Antivirais/farmacologia , Azul de Metileno/química , Azul de Metileno/farmacologia , Orthopoxvirus/efeitos dos fármacos , Antivirais/química , Linhagem Celular , Vírus da Varíola Bovina/efeitos dos fármacos , Células HeLa , Humanos , Monkeypox virus/efeitos dos fármacos , Orthopoxvirus/classificação , Vaccinia virus/efeitos dos fármacos , Ligação Viral/efeitos dos fármacos
16.
Front Microbiol ; 11: 603, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390964

RESUMO

Orthopoxviruses (OPXVs) are an increasing threat to human health due to the growing population of OPXV-naive individuals after the discontinuation of routine smallpox vaccination. Antiviral drugs that are effective as postexposure treatments against variola virus (the causative agent of smallpox) or other OPXVs are critical in the event of an OPXV outbreak or exposure. The only US Food and Drug Administration-approved drug to treat smallpox, Tecovirimat (ST-246), exerts its antiviral effect by inhibiting extracellular virus (EV) formation, thereby preventing cell-cell and long-distance spread. We and others have previously demonstrated that host Golgi-associated retrograde proteins play an important role in monkeypox virus (MPXV) and vaccinia virus (VACV) EV formation. Inhibition of the retrograde pathway by small molecules such as Retro-2 has been shown to decrease VACV infection in vitro and to a lesser extent in vivo. To identify more potent inhibitors of the retrograde pathway, we screened a large panel of compounds containing a benzodiazepine scaffold like that of Retro-1, against VACV infection. We found that a subset of these compounds displayed better anti-VACV activity, causing a reduction in EV particle formation and viral spread compared to Retro-1. PA104 emerged as the most potent analog, inhibiting 90% viral spread at 1.3 µM with a high selectivity index. In addition, PA104 strongly inhibited two distinct ST-246-resistant viruses, demonstrating its potential benefit for use in combination therapy with ST-246. These data and further characterizations of the specific protein targets and in vivo efficacy of PA104 may have important implications for the design of effective antivirals against OPXV.

17.
Viruses ; 12(7)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629851

RESUMO

Although orthopoxviruses (OPXV) are known to encode a majority of the genes required for replication in host cells, genome-wide genetic screens have revealed that several host pathways are indispensable for OPXV infection. Through a haploid genetic screen, we previously identified several host genes required for monkeypox virus (MPXV) infection, including the individual genes that form the conserved oligomeric Golgi (COG) complex. The COG complex is an eight-protein (COG1-COG8) vesicle tethering complex important for regulating membrane trafficking, glycosylation enzymes, and maintaining Golgi structure. In this study, we investigated the role of the COG complex in OPXV infection using cell lines with individual COG gene knockout (KO) mutations. COG KO cells infected with MPXV and vaccinia virus (VACV) produced small plaques and a lower virus yield compared to wild type (WT) cells. In cells where the KO phenotype was reversed using a rescue plasmid, the size of virus plaques increased demonstrating a direct link between the decrease in viral spread and the KO of COG genes. KO cells infected with VACV displayed lower levels of viral fusion and entry compared to WT suggesting that the COG complex is important for early events in OPXV infection. Additionally, fewer actin tails were observed in VACV-infected KO cells compared to WT. Since COG complex proteins are required for cellular trafficking of glycosylated membrane proteins, the disruption of this process due to lack of individual COG complex proteins may potentially impair the virus-cell interactions required for viral entry and egress. These data validate that the COG complex previously identified in our genetic screens plays a role in OPXV infection.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Orthopoxvirus/fisiologia , Infecções por Poxviridae/metabolismo , Infecções por Poxviridae/virologia , Internalização do Vírus , Proteínas Adaptadoras de Transporte Vesicular/genética , Glicosilação , Complexo de Golgi , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Mutação , Orthopoxvirus/genética , Infecções por Poxviridae/genética
18.
Vaccines (Basel) ; 8(1)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041104

RESUMO

Background: Vaccinia is known to induce antibody and cellular responses. Plasmablast, circulating follicular helper T (cTFH) cells, cytokine-expressing CD4 T cells, and memory B cells were compared between subcutaneous (SC) and needle-free jet injection (JI) recipients of non-replicating modified vaccinia Ankara (MVA) vaccine. Methods: Vaccinia-naïve adults received MVA SC or by JI on Days 1 and 29. Vaccinia-specific antibodies were quantified by plaque reduction neutralization test (PRNT) and enzyme-linked immunosorbent assay. Plasmablast, cTFH, and cytokine-expressing CD4 T cells were assessed on Days 1, 8, 15, 29, 36, 43 (cTFH and CD4+ only) and 57. Memory B cells were measured on Days 1 and 57. Results: Of the 36 enrolled subjects, only 22 received both vaccinations and had evaluable specimens after the second vaccine. Plasmablasts peaked one week after each vaccine. Day 15 plasmablasts correlated with peak PRNT titers. cTFH peaked on Days 8 and 36 and correlated with Day 36 plasmablasts. CD4+ peaked at Day 29 and one-third produced ≥2 cytokines. Day 57 memory B cells ranged from 0.1% to 0.17% of IgG-secreting B cells. Conclusions: This study provides insights into the cellular responses to non-replicating MVA, currently used as a vector for a variety of novel vaccines.

19.
Int J Infect Dis ; 84S: S57-S63, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30658170

RESUMO

BACKGROUND: The Indian population is facing highest dengue burden worldwide supporting an urgent need for vaccines. For vaccine introduction, evaluation and interpretation it is important to gain a critical understanding of immune memory induced by natural exposure. However, immune memory to dengue remains poorly characterized in this region. METHODS: We enumerated levels of dengue specific memory B cells (MBC), neutralizing (NT) and binding antibodies in healthy adults (n=70) from New Delhi. RESULTS: NT-antibodies, binding antibodies and MBC were detectable in 86%, 86.56% and 81.63% of the subjects respectively. Among the neutralizing positive subjects, 58%, 27%, 5% and 10% neutralized all four, any three, any two and any one dengue serotypes respectively. The presence of the neutralizing antibodies was associated with the presence of the MBC and binding antibodies. However, a massive interindividual variation was observed in the levels of the neutralizing antibodies (range, <1:50-1:30,264), binding antibodies (range, 1:3,000-1:134,000,) as well as the MBC (range=0.006%-5.05%). CONCLUSION: These results indicate that a vast majority of the adults are immune to multiple dengue serotypes and show massive interindividual variation in neutralizing/binding antibodies and MBCs - emphasizing the importance of monitoring multiple parameters of immune memory in order to properly plan, evaluate and interpret dengue vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Adulto , Reações Cruzadas , Dengue/epidemiologia , Feminino , Humanos , Índia , Masculino , Sorogrupo , Adulto Jovem
20.
Viruses ; 11(1)2018 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-30597938

RESUMO

The re-emergence of Zika virus (ZIKV) in the western hemisphere has most significantly affected dengue virus (DENV) endemic regions. Due to the geographical overlap between these two closely related flaviviruses, numerous individuals who suffered ZIKV infection during recent outbreaks may have also previously been exposed to DENV. As such, the impact of pre-existing dengue immunity on immune responses to ZIKV has been an area of focused research and interest. To understand how B cell responses to a ZIKV infection may be modulated by prior dengue exposures, we compared and contrasted plasmablast repertoire and specificity between two ZIKV-infected individuals, one dengue-naïve (ZK018) and the other dengue-experienced (ZK016). In addition to examining serological responses, we generated 59 patient plasmablast-derived monoclonal antibodies (mAbs) to define the heterogeneity of the early B cell response to ZIKV. Both donors experienced robust ZIKV-induced plasmablast expansions early after infection, with comparable mutational frequencies in their antibody variable genes. However, notable differences were observed in plasmablast clonality and functional reactivity. Plasmablasts from the dengue-experienced donor ZK016 included cells with shared clonal origin, while ZK018 mAbs were entirely clonally unrelated. Both at the mAb and plasma level, ZK016 antibodies displayed extensive cross-reactivity to DENV1-4, and preferentially neutralized DENV compared to ZIKV. In contrast, the neutralization activity of ZK018 mAbs was primarily directed towards ZIKV, and fewer mAbs from this donor were cross-reactive, with the cross-reactive phenotype largely limited to fusion loop-specific mAbs. ZK016 antibodies caused greater enhancement of DENV2 infection of FcRγ-expressing cells overall compared to ZK018, with a striking difference at the plasma level. Taken together, these data strongly suggest that the breadth and protective capacity of the initial antibody responses after ZIKV infection may depend on the dengue immune status of the individual. These findings have implications for vaccine design, given the likelihood that future epidemics will involve both dengue-experienced and naïve populations.


Assuntos
Linfócitos B/imunologia , Reações Cruzadas , Dengue/imunologia , Memória Imunológica , Plasmócitos/imunologia , Infecção por Zika virus/imunologia , Adulto , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vírus da Dengue , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa