Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 93(21): 7673-7681, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34009952

RESUMO

Picoliter-volume droplets within segmented flows can be probed in a rapid and efficient manner using optical detection methods. To date, however, most detection schemes for droplet content analysis have relied on the use of time-integrated fluorescence measurements. Despite its undoubted utility, the implementation of absorbance-based detectors is particularly challenging due to the reduced optical path lengths that are characteristic of microfluidic systems and deleterious scattering at droplet-oil interfaces. Unsurprisingly, efforts to develop sensitive absorbance-based detection schemes for the interrogation of rapidly moving droplets have primarily focused on ensuring adequate analytical sensitivity and, to date, have been exclusively limited to single-wavelength measurements. To address this limitation, and expand the information content associated with absorbance measurements on-chip, we herein describe a detection scheme for the extraction of broad-band absorbance spectra from pL-volume droplets with high sensitivity. The combination of a confocal optical system (that confines incident light to a reduced detection volume) and a postprocessing algorithm (that effectively removes the contribution of the carrier oil from the extracted spectra) engenders significant improvements in signal-to-noise ratios. Our system is initially calibrated by acquiring absorbance spectra from aqueous solutions of fluorescein isothiocyanate. These measurements confirm both excellent linearity over the studied range (from 0 to 100 µM) and a concentration limit of detection of 800 nM. The methodology is then used to monitor the salt-induced aggregation of gold nanoparticles with millisecond time resolution. This approach for small-volume absorbance spectroscopy allows for both high-throughput and high-information content measurements in subnanoliter volumes and will be highly desirable in a wide variety of bioanalytical applications where sensitivity and throughput are priorities.


Assuntos
Nanopartículas Metálicas , Técnicas Analíticas Microfluídicas , Fluoresceína , Ouro , Análise Espectral
2.
Adv Mater ; 33(51): e2106155, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34658087

RESUMO

Despite their link to neurodegenerative diseases, amyloids of natural and synthetic sources can also serve as building blocks for functional materials, while possessing intrinsic photonic properties. Here, it is demonstrated that orientationally ordered amyloid fibrils exhibit polarization-dependent fluorescence, and can mechanically align rod-shaped plasmonic nanoparticles codispersed with them. The coupling between the photonic fibrils in liquid crystalline phases and the plasmonic effect of the nanoparticles leads to selective activation of plasmonic extinctions as well as enhanced fluorescence from the hybrid material. These findings are consistent with numerical simulations of the near-field plasmonic enhancement around the nanoparticles. The study provides an approach to synthesize the intrinsic photonic and mechanical properties of amyloid into functional hybrid materials, and may help improve the detection of amyloid deposits based on their enhanced intrinsic luminescence.


Assuntos
Nanotubos
3.
ACS Meas Sci Au ; 1(1): 27-34, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36785734

RESUMO

Droplet-based microfluidic systems are ideally suited for the investigation of nucleation and crystallization processes. To best leverage the features of such platforms (including exquisite time resolution and high-throughput operation), sensitive and in situ detection schemes are needed to extract real-time chemical information about all species of interest. In this regard, the extension of conventional (UV, visible, and infrared) optical detection schemes to the X-ray region of the electromagnetic spectrum is of high current interest, as techniques such as X-ray absorption spectroscopy (XAS) provide for the element-specific investigation of the local chemical environment. Accordingly, herein, we report for the first time the integration of millisecond droplet-based microfluidics with XAS. Such a platform allows for the sensitive acquisition of X-ray absorption data from picoliter-volume droplets moving at high linear velocities. Significantly, the high-temporal resolution of the droplet-based microfluidic platform enables unprecedented access to the early stages of the reaction. Using such an approach, we demonstrate in situ monitoring of calcium carbonate precipitation by extracting XAS spectra at the early time points of the reaction with a dead time as low as 10 ms. We obtain insights into the kinetics of the formation of amorphous calcium carbonate (ACC) as a first species during the crystallization process by monitoring the proportion of calcium ions converted into ACC. Within the confined and homogeneous environment of picoliter-volume droplets, the ACC content reaches 60% over the first 130 ms. More generally, the presented method offers new opportunities for the real-time monitoring of fast chemical and biological processes.

4.
Nanoscale ; 12(27): 14808-14817, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32633307

RESUMO

Colloidal lead halide perovskite nanocrystals (LHP NCs) assume a variety of morphologies (e.g. cubes, sheets, and wires). Their labile structural and surface characters allow them to undergo post-synthetic evolution of shape and crystallographic characters. Such transformations can be advantageous or deleterious, and it is therefore vital to both understand and exert control over these processes. In this study, we report novel long-armed hexapod structures of cesium lead bromide nanocrystals. These branched structures evolve from quantum-confined CsPbBr3 nanosheets to Cs4PbBr6 hexapods over a period of 24 hours. Time-resolved optical and structural characterization reveals a post-synthesis mechanism of phase transformation, oriented attachment and branch elongation. More generally, the study reveals important processes associated with LHP NC aging and demonstrates the utility of slow reaction kinetics in obtaining complex morphologies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa