Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mol Ther ; 30(8): 2722-2745, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35524407

RESUMO

Second-order spinal cord excitatory neurons play a key role in spinal processing and transmission of pain signals to the brain. Exogenously induced change in developmentally imprinted excitatory neurotransmitter phenotypes of these neurons to inhibitory has not yet been achieved. Here, we use a subpial dorsal horn-targeted delivery of AAV (adeno-associated virus) vector(s) encoding GABA (gamma-aminobutyric acid) synthesizing-releasing inhibitory machinery in mice with neuropathic pain. Treated animals showed a progressive and complete reversal of neuropathic pain (tactile and brush-evoked pain behavior) that persisted for a minimum of 2.5 months post-treatment. The mechanism of this treatment effect results from the switch of excitatory to preferential inhibitory neurotransmitter phenotype in dorsal horn nociceptive neurons and a resulting increase in inhibitory activity in regional spinal circuitry after peripheral nociceptive stimulation. No detectable side effects (e.g., sedation, motor weakness, loss of normal sensation) were seen between 2 and 13 months post-treatment in naive adult mice, pigs, and non-human primates. The use of this treatment approach may represent a potent and safe treatment modality in patients suffering from spinal cord or peripheral nerve injury-induced neuropathic pain.


Assuntos
Neuralgia , Nociceptores , Animais , Técnicas de Transferência de Genes , Camundongos , Neuralgia/etiologia , Neuralgia/terapia , Células do Corno Posterior , Medula Espinal , Corno Dorsal da Medula Espinal , Suínos
2.
Biomacromolecules ; 22(4): 1417-1431, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33710862

RESUMO

Injectable hydrogel scaffolds combined with stem cell therapy represent a promising approach for minimally invasive surgical tissue repair. In this study, we developed and characterized a fully synthetic, biodegradable poly(N5-(2-hydroxyethyl)-l-glutamine)-based injectable hydrogel modified with integrin-binding arginine-glycine-aspartic acid (RGD) peptide (PHEG-Tyr-RGD). The biodegradable hydroxyphenyl polymer precursor derivative of PHEG-Tyr was enzymatically cross-linked to obtain injectable hydrogels with different physicochemical properties. The gelation time, gel yield, swelling behavior, and storage modulus of the PHEG-Tyr hydrogels were tuned by varying the concentrations of the PHEG-Tyr precursors and horseradish peroxidase as well as the nH2O2/nTyr ratio. The mechanical properties and gelation time of the PHEG-Tyr hydrogel were optimized for the encapsulation of rat mesenchymal stem cells (rMSCs). We focused on the 2D and 3D spreading and viability of rMSCs within the PHEG-Tyr-RGD hydrogels with different physicochemical microenvironments in vitro. Encapsulation of rMSCs shows long-term survival and exhibits cell-matrix and cell-cell interactions reflective of both the RGD concentration and hydrogel stiffness. The presented biomaterial represents a suitable biological microenvironment to guide 3D spreading and may act as a promising 3D artificial extracellular matrix for stem cell therapy.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Aminoácidos , Animais , Peróxido de Hidrogênio , Oligopeptídeos , Ratos
3.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673496

RESUMO

Superporous poly(2-hydroxyethyl methacrylate-co-2-aminoethyl methacrylate) (P(HEMA-AEMA)) hydrogel scaffolds are designed for in vitro 3D culturing of leukemic B cells. Hydrogel porosity, which influences cell functions and growth, is introduced by adding ammonium oxalate needle-like crystals in the polymerization mixture. To improve cell vitality, cell-adhesive Arg-Gly-Asp-Ser (RGDS) peptide is immobilized on the N-(γ-maleimidobutyryloxy)succinimide-activated P(HEMA-AEMA) hydrogels via reaction of SH with maleimide groups. This modification is especially suitable for the survival of primary chronic lymphocytic leukemia cells (B-CLLs) in 3D cell culture. No other tested stimuli (interleukin-4, CD40 ligand, or shaking) can further improve B-CLL survival or metabolic activity. Both unmodified and RGDS-modified P(HEMA-AEMA) scaffolds serve as a long-term (70 days) 3D culture platforms for HS-5 and M2-10B4 bone marrow stromal cell lines and MEC-1 and HG-3 B-CLL cell lines, although the adherent cells retain their physiological morphologies, preferably on RGDS-modified hydrogels. Moreover, the porosity of hydrogels allows direct cell lysis, followed by efficient DNA isolation from the 3D-cultured cells. P(HEMA-AEMA)-RGDS thus serves as a suitable 3D in vitro leukemia model that enables molecular and metabolic assays and allows imaging of cell morphology, interactions, and migration by confocal microscopy. Such applications can prospectively assist in testing of drugs to treat this frequently recurring or refractory cancer.


Assuntos
Técnicas de Cultura de Células/métodos , Hidrogéis/química , Leucemia Linfocítica Crônica de Células B , Alicerces Teciduais/química , Linhagem Celular Tumoral , Humanos , Células-Tronco Mesenquimais , Oligopeptídeos , Porosidade , Succinimidas/química
4.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072085

RESUMO

In the fast-developing field of tissue engineering there is a constant demand for new materials as scaffolds for cell seeding, which can better mimic a natural extracellular matrix as well as control cell behavior. Among other materials, polysaccharides are widely used for this purpose. One of the main candidates for scaffold fabrication is alginate. However, it lacks sites for cell adhesion. That is why one of the steps toward the development of suitable scaffolds for cells is the introduction of the biofunctionality to the alginate structure. In this work we focused on bone-sialoprotein derived peptide (TYRAY) conjugation to the molecule of alginate. Here the comparison study on four different approaches of peptide conjugation was performed including traditional and novel modification methods, based on 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxy succinimide (EDC/NHS), 4-(4,6-dimethoxy-1,3,5-triazine-2-yl)-4-methylmorpholinium chloride (DMTMM), thiol-Michael addition and Cu-catalyzed azide-alkyne cycloaddition reactions. It was shown that the combination of the alginate amidation with the use of and subsequent Cu-catalyzed azide-alkyne cycloaddition led to efficient peptide conjugation, which was proven with both NMR and XPS methods. Moreover, the cell culture experiment proved the positive effect of peptide presence on the adhesion of human embryonic stem cells.


Assuntos
Alginatos/química , Biomimética , Peptídeos/química , Engenharia Tecidual , Alicerces Teciduais , Aminas/química , Biomimética/métodos , Adesão Celular , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Química Click , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Peptídeos/farmacologia , Engenharia Tecidual/métodos
5.
Int J Mol Sci ; 21(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947982

RESUMO

Antifouling polymer layers containing extracellular matrix-derived peptide motifs offer promising new options for biomimetic surface engineering. In this contribution, we report the design of antifouling vascular grafts bearing biofunctional peptide motifs for tissue regeneration applications based on hierarchical polymer brushes. Hierarchical diblock poly(methyl ether oligo(ethylene glycol) methacrylate-block-glycidyl methacrylate) brushes bearing azide groups (poly(MeOEGMA-block-GMA-N3)) were grown by surface-initiated atom transfer radical polymerization (SI-ATRP) and functionalized with biomimetic RGD peptide sequences. Varying the conditions of copper-catalyzed alkyne-azide "click" reaction allowed for the immobilization of RGD peptides in a wide surface concentration range. The synthesized hierarchical polymer brushes bearing peptide motifs were characterized in detail using various surface sensitive physicochemical methods. The hierarchical brushes presenting the RGD sequences provided excellent cell adhesion properties and at the same time remained resistant to fouling from blood plasma. The synthesis of anti-fouling hierarchical brushes bearing 1.2 × 103 nmol/cm2 RGD biomimetic sequences has been adapted for the surface modification of commercially available grafts of woven polyethylene terephthalate (PET) fibers. The fiber mesh was endowed with polymerization initiator groups via aminolysis and acylation reactions optimized for the material. The obtained bioactive antifouling vascular grafts promoted the specific adhesion and growth of endothelial cells, thus providing a potential avenue for endothelialization of artificial conduits.


Assuntos
Materiais Biomiméticos , Prótese Vascular , Materiais Revestidos Biocompatíveis , Regeneração Tecidual Guiada/instrumentação , Oligopeptídeos/química , Polietilenotereftalatos/química , Polimerização , Adsorção , Motivos de Aminoácidos , Azidas/química , Proteínas Sanguíneas , Adesão Celular , Divisão Celular , Química Click , Endotélio Vascular/fisiologia , Vidro , Ouro , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Imobilizadas , Teste de Materiais , Plasma , Silício , Propriedades de Superfície , Trombose/prevenção & controle
6.
Mol Biol Rep ; 46(3): 3063-3072, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30859448

RESUMO

The efficiency of solid phase extraction (SPE) of DNA on polymer particles is limited by the features of the applied solid support, such as size, hydrophilicity, and functionality and their application in SPE also requires additional steps and compounds to finally obtain sufficient amount of high-quality DNA. The present study describes a preparation of sub-micrometer monodisperse poly(methacrylic acid-co-ethylene dimethacrylate) (PME) particles by precipitation polymerization. The effect of the ethylene dimethacrylate (EDMA) crosslinker concentration on morphology and particle size, which varied from 730 to 900 nm, was investigated. The particles with 5 and 15 wt% EDMA were selected for a study of SPE of plasmid DNA under various adsorption and elution conditions, followed by the enzymatic restriction of isolated DNA to verify a quality the nucleic acid. The particles with 15 wt% EDMA were suitable for the SPE because they retained better colloidal stability during the adsorption without additional induction of DNA conformational change. The quality of isolated DNA was finally verified by enzymatic restriction by restriction endonuclease EcoRI. Moreover, the developed method using PME particles was successfully utilized for DNA isolation from Escherichia coli lysate.


Assuntos
DNA/isolamento & purificação , Extração em Fase Sólida , DNA/química , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Polímeros/química , Polimetil Metacrilato/química , Extração em Fase Sólida/métodos
7.
Langmuir ; 34(21): 6010-6020, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29728048

RESUMO

Polymer layers capable of suppressing protein adsorption from biological media while presenting extracellular matrix-derived peptide motifs offer valuable new options for biomimetic surface engineering. Herein, we provide detailed insights into physicochemical changes induced in a nonfouling poly(ethylene oxide) (PEO) brush/polydopamine (PDA) system by incorporation of adhesion ligand (RGD) peptides. Brushes with high surface chain densities (σ ≥ 0.5 chains·nm-2) and pronounced hydrophilicity (water contact angles ≤ 10°) were prepared by end-tethering of heterobifunctional PEOs ( Mn ≈ 20 000 g·mol-1) to PDA-modified surfaces from a reactive melt. Using alkyne distal end group on the PEO chains, azidopentanoic-bearing peptides were coupled through a copper-catalyzed Huisgen azide-alkyne "click" cycloaddition reaction. The surface concentration of RGD was tuned from complete saturation of the PEO surface with peptides (1.7 × 105 fmol·cm-2) to values which may induce distinct differences in cell adhesion (<6.0 × 102 fmol·cm-2). Infrared reflection-absorption and X-ray photoelectron spectroscopies proved the PDA-PEO layers covalent structure and the immobilization of RGD peptides. The complete reconstruction of experimental electrohydrodynamics data utilizing mean-field theory predictions further verified the attained brush structure of the end-tethered PEO chains which provided hydrodynamic screening of the PDA anchor. Increasing the surface concentration of immobilized RGD peptides led to increased interfacial charging. Supported by simulations, this observation was attributed to the ionization of functional groups in the amino acid sequence and to the pH-dependent adsorption of water ions (OH- > H3O+) from the electrolyte. Despite the distinct differences observed in the electrokinetic analysis of the surfaces bearing different amounts of RGD, it was found that the peptide presence on PEO(20 000)-PDA layers does not have a significant effect on the nonfouling properties of the system. Notably, the presented PEO(20 000)-PDA layers bearing RGD peptides in the surface concentration range 5.9 to 1.7 × 105 fmol·cm-2 reduced the protein adsorption from fetal bovine serum to less than 30 ng·cm-2, that is, values comparable to the ones obtained for pristine PEO(20 000)-PDA layers.


Assuntos
Peptídeos/química , Polietilenoglicóis/química , Adsorção , Adesão Celular , Estrutura Molecular , Espectroscopia Fotoeletrônica , Propriedades de Superfície
8.
J Mater Sci Mater Med ; 29(7): 89, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29938301

RESUMO

While many types of biomaterials have been evaluated in experimental spinal cord injury (SCI) research, little is known about the time-related dynamics of the tissue infiltration of these scaffolds. We analyzed the ingrowth of connective tissue, axons and blood vessels inside the superporous poly (2-hydroxyethyl methacrylate) hydrogel with oriented pores. The hydrogels, either plain or seeded with mesenchymal stem cells (MSCs), were implanted in spinal cord transection at the level of Th8. The animals were sacrificed at days 2, 7, 14, 28, 49 and 6 months after SCI and histologically evaluated. We found that within the first week, the hydrogels were already infiltrated with connective tissue and blood vessels, which remained stable for the next 6 weeks. Axons slowly and gradually infiltrated the hydrogel within the first month, after which the numbers became stable. Six months after SCI we observed rare axons crossing the hydrogel bridge and infiltrating the caudal stump. There was no difference in the tissue infiltration between the plain hydrogels and those seeded with MSCs. We conclude that while connective tissue and blood vessels quickly infiltrate the scaffold within the first week, axons show a rather gradual infiltration over the first month, and this is not facilitated by the presence of MSCs inside the hydrogel pores. Further research which is focused on the permissive micro-environment of the hydrogel scaffold is needed, to promote continuous and long-lasting tissue regeneration across the spinal cord lesion.


Assuntos
Materiais Biocompatíveis/química , Transplante de Células-Tronco Mesenquimais , Traumatismos da Medula Espinal/terapia , Alicerces Teciduais/química , Animais , Axônios/patologia , Hidrogéis , Masculino , Teste de Materiais , Neovascularização Fisiológica , Oligopeptídeos/química , Poli-Hidroxietil Metacrilato/química , Porosidade , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Regeneração da Medula Espinal/fisiologia , Fatores de Tempo
9.
Int J Mol Sci ; 19(9)2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30131482

RESUMO

Methacrylate hydrogels have been extensively used as bridging scaffolds in experimental spinal cord injury (SCI) research. As synthetic materials, they can be modified, which leads to improved bridging of the lesion. Fibronectin, a glycoprotein of the extracellular matrix produced by reactive astrocytes after SCI, is known to promote cell adhesion. We implanted 3 methacrylate hydrogels: a scaffold based on hydroxypropylmethacrylamid (HPMA), 2-hydroxyethylmethacrylate (HEMA) and a HEMA hydrogel with an attached fibronectin (HEMA-Fn) in an experimental model of acute SCI in rats. The animals underwent functional evaluation once a week and the spinal cords were histologically assessed 3 months after hydrogel implantation. We found that both the HPMA and the HEMA-Fn hydrogel scaffolds lead to partial sensory improvement compared to control animals and animals treated with plain HEMA scaffold. The HPMA scaffold showed an increased connective tissue infiltration compared to plain HEMA hydrogels. There was a tendency towards connective tissue infiltration and higher blood vessel ingrowth in the HEMA-Fn scaffold. HPMA hydrogels showed a significantly increased axonal ingrowth compared to HEMA-Fn and plain HEMA; while there were some neurofilaments in the peripheral as well as the central region of the HEMA-Fn scaffold, no neurofilaments were found in plain HEMA hydrogels. In conclusion, HPMA hydrogel as well as the HEMA-Fn scaffold showed better bridging qualities compared to the plain HEMA hydrogel, which resulted in very limited partial sensory improvement.


Assuntos
Hidrogéis , Metacrilatos , Regeneração Nervosa , Traumatismos da Medula Espinal/terapia , Animais , Axônios/fisiologia , Materiais Biocompatíveis , Biomarcadores , Barreira Hematoencefálica/metabolismo , Tecido Conjuntivo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Expressão Gênica , Metacrilatos/química , Neovascularização Fisiológica , Ratos , Traumatismos da Medula Espinal/etiologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Alicerces Teciduais , Cicatrização
10.
Biomacromolecules ; 16(11): 3455-65, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26474357

RESUMO

We present an investigation of the preparation of highly porous hydrogels based on biodegradable synthetic poly(α-amino acid) as potential tissue engineering scaffolds. Covalently cross-linked gels with permanent pores were formed under cryogenic conditions by free-radical copolymerization of poly[N(5)-(2-hydroxyethyl)-L-glutamine-stat-N(5)-(2-methacryloyl-oxy-ethyl)-L-glutamine] (PHEG-MA) with 2-hydrohyethyl methacrylate (HEMA) and, optionally, N-propargyl acrylamide (PrAAm) as minor comonomers. The morphology of the cryogels showed interconnected polyhedral or laminar pores. The volume content of communicating water-filled pores was >90%. The storage moduli of the swollen cryogels were in the range of 1-6 kPa, even when the water content was >95%. The enzymatic degradation of a cryogel corresponded to the decrease in its storage modulus during incubation with papain, a model enzyme with specificity analogous to wound-healing enzymes. It was shown that cryogels with incorporated alkyne groups can easily be modified with short synthetic peptides using azide-alkyne cycloaddition "click" chemistry, thus providing porous hydrogel scaffolds with biomimetic features.


Assuntos
Aminoácidos/química , Química Click , Criogéis/química , Polímeros/química , Acrilamidas/química , Materiais Biocompatíveis/química , Biomimética , Metacrilatos/química , Morfinanos/química , Peptídeos/química , Polimerização , Porosidade , Engenharia Tecidual , Alicerces Teciduais/química
11.
Biomacromolecules ; 16(4): 1146-56, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25728457

RESUMO

The ability to tailor mechanical properties and architecture is crucial in creating macroporous hydrogel scaffolds for tissue engineering. In the present work, a technique for the modification of the pore size and stiffness of acrylamide-based cryogels is demonstrated via the regulation of an electron beam irradiation dose. The samples were characterized by equilibrium swelling measurements, light and scanning electron microscopy, mercury porosimetry, Brunauer-Emmett-Teller surface area analysis, and stiffness measurements. Their properties were compared to cryogels prepared by a standard redox-initiated radical polymerization. A (125)I radiolabeled azidopentanoyl-GGGRGDSGGGY-NH2 peptide was bound to the surface to determine the concentration of the adhesive sites available for biomimetic modification. The functionality of the prepared substrates was evaluated by in vitro cultivation of adipose-derived stem cells. Moreover, the feasibility of preparing layered cryogels was demonstrated. This may be the key to the future preparation of complex hydrogel-based scaffolds to mimic the extracellular microenvironment in a wide range of applications.


Assuntos
Criogéis/síntese química , Polimerização , Porosidade , Adipócitos/efeitos dos fármacos , Criogéis/farmacologia , Elétrons , Humanos
12.
J Mater Sci Mater Med ; 26(11): 253, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26449443

RESUMO

Protein-repulsive surfaces modified with ligands for cell adhesion receptors have been widely developed for controlling the cell adhesion and growth in tissue engineering. However, the question of matrix production and deposition by cells on these surfaces has rarely been addressed. In this study, protein-repulsive polydopamine-poly(ethylene oxide) (PDA-PEO) surfaces were functionalized with an RGD-containing peptide (RGD), with a collagen-derived peptide binding fibronectin (Col), or by a combination of these peptides (RGD + Col, ratio 1:1) in concentrations of 90 fmol/cm(2) and 700 fmol/cm(2) for each peptide type. When seeded with vascular endothelial CPAE cells, the PDA-PEO surfaces proved to be completely non-adhesive for cells. On surfaces with lower peptide concentrations and from days 1 to 3 after seeding, cell adhesion and growth was restored practically only on the RGD-modified surface. However, from days 3 to 7, cell adhesion and growth was improved on surfaces modified with Col and with RGD + Col. At higher peptide concentrations, the cell adhesion and growth was markedly improved on all peptide-modified surfaces in both culture intervals. However, the collagen-derived peptide did not increase the expression of fibronectin in the cells. The deposition of fibronectin on the material surface was generally very low and similar on all peptide-modified surfaces. Nevertheless, the RGD + Col surfaces exhibited the highest cell adhesion stability under a dynamic load, which correlated with the highest expression of talin and vinculin in the cells on these surfaces. A combination of RGD + Col therefore seems to be the most promising for surface modification of biomaterials, e.g. vascular prostheses.


Assuntos
Biomimética , Adesão Celular , Indóis/química , Oligopeptídeos/química , Polietilenoglicóis/química , Polímeros/química , Adsorção , Sequência de Aminoácidos , Células Cultivadas , Fibronectinas/química , Fibronectinas/genética , Expressão Gênica , Humanos , Dados de Sequência Molecular , Propriedades de Superfície , Talina/genética , Vinculina/genética
13.
Small ; 10(6): 1106-15, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24500945

RESUMO

High pressure high temperature (HPHT) nanodiamonds (NDs) represent extremely promising materials for construction of fluorescent nanoprobes and nanosensors. However, some properties of bare NDs limit their direct use in these applications: they precipitate in biological solutions, only a limited set of bio-orthogonal conjugation techniques is available and the accessible material is greatly polydisperse in shape. In this work, we encapsulate bright 30-nm fluorescent nanodiamonds (FNDs) in 10-20-nm thick translucent (i.e., not altering FND fluorescence) silica shells, yielding monodisperse near-spherical particles of mean diameter 66 nm. High yield modification of the shells with PEG chains stabilizes the particles in ionic solutions, making them applicable in biological environments. We further modify the opposite ends of PEG chains with fluorescent dyes or vectoring peptide using click chemistry. High conversion of this bio-orthogonal coupling yielded circa 2000 dye or peptide molecules on a single FND. We demonstrate the superior properties of these particles by in vitro interaction with human prostate cancer cells: while bare nanodiamonds strongly aggregate in the buffer and adsorb onto the cell membrane, the shell encapsulated NDs do not adsorb nonspecifically and they penetrate inside the cells.


Assuntos
Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Nanodiamantes/química , Linhagem Celular Tumoral , Elétrons , Humanos , Luminescência , Microscopia Confocal , Nanodiamantes/ultraestrutura , Polietilenoglicóis/química , Dióxido de Silício/química , Espectrofotometria Infravermelho
14.
Biomed Mater ; 19(3)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38626774

RESUMO

Bioinks play a crucial role in tissue engineering, influencing mechanical and chemical properties of the printed scaffold as well as the behavior of encapsulated cells. Recently, there has been a shift from animal origin materials to their synthetic alternatives. In this context, we present here bioinks based on fully synthetic and biodegradable poly(α,L-amino acids) (PolyAA) as an alternative to animal-based gelatin methacrylate (Gel-Ma) bioinks. Additionally, we first reported the possibility of the visible light photoinitiated incorporation of the bifunctional cell adhesive RGD peptide into the PolyAA hydrogel matrix. The obtained hydrogels are shown to be cytocompatible, and their mechanical properties closely resemble those of gelatin methacrylate-based scaffolds. Moreover, combining the unique properties of PolyAA-based bioinks, the photocrosslinking strategy, and the use of droplet-based printing allows the printing of constructs with high shape fidelity and structural integrity from low-viscosity bioinks without using any sacrificial components. Overall, presented PolyAA-based materials are a promising and versatile toolbox that extends the range of bioinks for droplet bioprinting.


Assuntos
Aminoácidos , Materiais Biocompatíveis , Gelatina , Hidrogéis , Luz , Engenharia Tecidual , Alicerces Teciduais , Hidrogéis/química , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Gelatina/química , Aminoácidos/química , Materiais Biocompatíveis/química , Animais , Bioimpressão/métodos , Oligopeptídeos/química , Tinta , Metacrilatos/química , Humanos , Impressão Tridimensional , Teste de Materiais , Camundongos , Viscosidade
15.
Macromol Biosci ; 24(3): e2300266, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37821117

RESUMO

This study develops and characterizes novel biodegradable soft hydrogels with dual porosity based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers cross-linked by hydrolytically degradable linkers. The structure and properties of the hydrogels are designed as scaffolds for tissue engineering and they are tested in vitro with model mesenchymal stem cells (rMSCs). Detailed morphological characterization confirms dual porosity suitable for cell growth and nutrient transport. The dual porosity of hydrogels slightly improves rMSCs proliferation compared to the hydrogel with uniform pores. In addition, the laminin coating supports the adhesion of rMSCs to the hydrogel surface. However, hydrogels modified by heptapeptide RGDSGGY significantly stimulate cell adhesion and growth. Moreover, the RGDS-modified hydrogels also affect the topology of proliferating rMSCs, ranging from single-cell to multicellular clusters. The 3D reconstruction of the hydrogels with cells obtained by laser scanning confocal microscopy (LSCM) confirms cell penetration into the inner structure of the hydrogel and its corresponding microstructure. The prepared biodegradable oligopeptide-modified hydrogels with dual porosity are suitable candidates for further in vivo evaluation in soft tissue regeneration.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Hidrogéis/química , Engenharia Tecidual , Porosidade , Adesão Celular , Alicerces Teciduais/química
16.
Cell Transplant ; 32: 9636897231163232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959733

RESUMO

The critical requirements in developing clinical-grade human-induced pluripotent stem cells-derived neural precursors (hiPSCs-NPCs) are defined by expandability, genetic stability, predictable in vivo post-grafting differentiation, and acceptable safety profile. Here, we report on the use of manual-selection protocol for generating expandable and stable human NPCs from induced pluripotent stem cells. The hiPSCs were generated by the reprogramming of peripheral blood mononuclear cells with Sendai-virus (SeV) vector encoding Yamanaka factors. After induction of neural rosettes, morphologically defined NPC colonies were manually harvested, re-plated, and expanded for up to 20 passages. Established NPCs showed normal karyotype, expression of typical NPCs markers at the proliferative stage, and ability to generate functional, calcium oscillating GABAergic or glutamatergic neurons after in vitro differentiation. Grafted NPCs into the striatum or spinal cord of immunodeficient rats showed progressive maturation and expression of early and late human-specific neuronal and glial markers at 2 or 6 months post-grafting. No tumor formation was seen in NPCs-grafted brain or spinal cord samples. These data demonstrate the effective use of in vitro manual-selection protocol to generate safe and expandable NPCs from hiPSCs cells. This protocol has the potential to be used to generate GMP (Good Manufacturing Practice)-grade NPCs from hiPSCs for future clinical use.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Humanos , Ratos , Animais , Vírus Sendai/genética , Leucócitos Mononucleares , Neurônios/metabolismo , Diferenciação Celular
17.
Cell Transplant ; 32: 9636897221107009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37088987

RESUMO

One of the challenges in clinical translation of cell-replacement therapies is the definition of optimal cell generation and storage/recovery protocols which would permit a rapid preparation of cell-treatment products for patient administration. Besides, the availability of injection devices that are simple to use is critical for potential future dissemination of any spinally targeted cell-replacement therapy into general medical practice. Here, we compared the engraftment properties of established human-induced pluripotent stem cells (hiPSCs)-derived neural precursor cell (NPCs) line once cells were harvested fresh from the cell culture or previously frozen and then grafted into striata or spinal cord of the immunodeficient rat. A newly developed human spinal injection device equipped with a spinal cord pulsation-cancelation magnetic needle was also tested for its safety in an adult immunosuppressed pig. Previously frozen NPCs showed similar post-grafting survival and differentiation profile as was seen for freshly harvested cells. Testing of human injection device showed acceptable safety with no detectable surgical procedure or spinal NPCs injection-related side effects.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Injeções Espinhais , Células-Tronco Neurais , Transplante de Células-Tronco , Adulto , Animais , Humanos , Ratos , Diferenciação Celular/fisiologia , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Vetores Genéticos/genética , Sobrevivência de Enxerto/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Injeções Espinhais/efeitos adversos , Injeções Espinhais/instrumentação , Injeções Espinhais/métodos , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Vírus Sendai , Manejo de Espécimes/métodos , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/instrumentação , Transplante de Células-Tronco/métodos , Suínos , Coleta de Tecidos e Órgãos/métodos , Resultado do Tratamento , Encéfalo , Medula Espinal
18.
Langmuir ; 28(40): 14273-83, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22989020

RESUMO

Nonfouling surfaces capable of reducing protein adsorption are highly desirable in a wide range of applications. Coating of surfaces with poly(ethylene oxide) (PEO), a water-soluble, nontoxic, and nonimmunogenic polymer, is most frequently used to reduce nonspecific protein adsorption. Here we show how to prepare dense PEO brushes on virtually any substrate by tethering PEO to polydopamine (PDA)-modified surfaces. The chain lengths of hetero-bifunctional PEOs were varied in the range of 45-500 oxyethylene units (M(n) = 2000-20,000). End-tethering of PEO chains was performed through amine and thiol headgroups from reactive polymer melts to minimize excluded volume effects. Surface plasmon resonance (SPR) was applied to investigate the adsorption of model protein solutions and complex biologic medium (human blood plasma) to the densely packed PEO brushes. The level of protein adsorption of human serum albumin and fibrinogen solutions was below the detection limit of the SPR measurements for all PEO chains end-tethered to PDA, thus exceeding the protein resistance of PEO layers tethered directly on gold. It was found that the surface resistance to adsorption of lysozyme and human blood plasma increased with increasing length and brush character of the PEO chains end-tethered to PDA with a similar or better resistance in comparison to PEO layers on gold. Furthermore, the chain density, thickness, swelling, and conformation of PEO layers were determined using spectroscopic ellipsometry (SE), dynamic water contact angle (DCA) measurements, infrared reflection-absorption spectroscopy (IRRAS), and vibrational sum-frequency-generation (VSFG) spectroscopy, the latter in air and water.


Assuntos
Incrustação Biológica/prevenção & controle , Indóis/química , Polietilenoglicóis/química , Polímeros/química , Adsorção , Ar , Ouro/química , Humanos , Muramidase/química , Albumina Sérica/química , Água/química
19.
Beilstein J Nanotechnol ; 13: 538-548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812252

RESUMO

A new type of hydrophilic, biocompatible, and biodegradable polypeptide nanogel depots loaded with the natural serine protease inhibitor α1-antitrypsin (AAT) was applied for the inhibition of the inflammatory mediator trypsin. Two types of nanogels were prepared from linear synthetic polypeptides based on biocompatible and biodegradable poly[N 5-(2-hydroxyethyl)-ʟ-glutamine-ran-N 5-propargyl-ʟ-glutamine-ran-N 5-(6-aminohexyl)-ʟ-glutamine]-ran-N 5-[2-(4-hydroxyphenyl)ethyl)-ʟ-glutamine] (PHEG-Tyr) or biocompatible N α-ʟ-lysine-grafted α,ß-poly[(2-propyne)-ᴅ,ʟ-aspartamide-ran-(2-hydroxyethyl)-ᴅʟ-aspartamide-ran-(2-(4-hydroxyphenyl)ethyl)-ᴅʟ-aspartamide] (N α-Lys-NG). Both nanogels were prepared by HRP/H2O2-mediated crosslinking in inverse miniemulsions with pH and temperature-stimuli responsive behavior confirmed by dynamic light scattering and zeta potential measurements. The loading capacity of PHEG-Tyr and N α-Lys-NG nanogels and their release profiles were first optimized with bovine serum albumin. The nanogels were then used for loading and release of AAT. PHEG-Tyr and N α-Lys-NG nanogels showed different loading capacities for AAT with the maximum (20%) achieved with N α-Lys-NG nanogel. In both cases, the nanogel depots demonstrated a burst release of AAT during the first 6 h, which could be favorable for quick inhibition of trypsin. A consequent pilot in vitro inhibition study revealed that both PHEG-Tyr and N α-Lys-NG nanogels loaded with AAT successfully inhibited the enzymatic activity of trypsin. Furthermore, the inhibitory efficiency of the AAT-loaded nanogels was higher than that of only AAT. Interestingly, also non-loaded PHEG-Tyr and N α-Lys-NG nanogels were shown to effectively inhibit trypsin because they contain suitable amino acids in their structures that effectively block the active site of trypsin.

20.
Biomacromolecules ; 12(9): 3232-42, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21823677

RESUMO

In this study, we propose substrate-independent modification for creating a protein-repellent surface based on dopamine-melanin anchoring layer used for subsequent binding of poly(ethylene oxide) (PEO) from melt. We verified that the dopamine-melanin layer can be formed on literally any substrate and could serve as the anchoring layer for subsequent grafting of PEO chains. Grafting of PEO from melt in a temperature range 70-110 °C produces densely packed PEO layers showing exceptionally low protein adsorption when exposed to the whole blood serum or plasma. The PEO layers prepared from melt at 110 °C retained the protein repellent properties for as long as 10 days after their exposure to physiological-like conditions. The PEO-dopamine-melanin modification represents a simple and universal surface modification method for the preparation of protein repellent surfaces that could serve as a nonfouling background in various applications, such as optical biosensors and tissue engineering.


Assuntos
Materiais Revestidos Biocompatíveis/síntese química , Melaninas/química , Polietilenoglicóis/química , Engenharia Tecidual/métodos , Adsorção , Animais , Técnicas Biossensoriais/métodos , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Bovinos , Cromatografia Líquida de Alta Pressão , Materiais Revestidos Biocompatíveis/análise , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Ligação Proteica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa