RESUMO
BACKGROUND: Antibiotic treatment of chronic Q fever is cumbersome and of long duration. To monitor treatment, there is a need for alternative biomarkers. Coxiella burnetii-specific interferon (IFN)-γ and interleukin (IL)-2 production reflect the type of effector and memory T-cell response. In chronic Q fever, C. burnetii-specific IFN-γ production is higher and IL-2 production is lower than in individuals with past Q fever. Here we explore whether C. burnetii-specific IFN-γ and IL-2 production correlate to treatment response. METHODS: We studied the longitudinal C. burnetii-specific IFN-γ/IL-2 ratio in fifteen proven chronic Q fever patients. All patients were followed for at least 18 months during antibiotic treatment. Treatment was considered successful when clinical recovery was observed, a positive PCR for C. burnetii DNA in blood became persistently negative, anti-phase I IgG showed a fourfold decrease or more, and imaging techniques showed disappearance of infectious foci. RESULTS: Overall, the IFN-γ/IL-2 ratio declined when patients experienced a successful treatment outcome. When treatment failed, IFN-γ/IL-2 ratios did not significantly decrease. The median (±IQR) slope of the longitudinal IFN-γ/IL-2 ratio with successful treatment was -2.10 (-7.02 to -0.06), and -0.15 (-1.13 to 0.25) with unsuccessful treatment (P = 0.19). Q fever endocarditis patients had higher IFN-γ/IL-2 ratios than patients with endovascular infections. CONCLUSION: We propose that the IFN-γ/IL-2 ratio can be used as an additional biomarker for monitoring chronic Q fever treatment, with declining ratios being indicative of successful treatment.
RESUMO
Diagnosis of chronic Q fever is difficult. PCR and culture lack sensitivity; hence, diagnosis relies mainly on serologic tests using an immunofluorescence assay (IFA). Optimal phase I IgG cutoff titers are debated but are estimated to be between 1:800 and 1:1,600. In patients with proven, probable, or possible chronic Q fever, we studied phase I IgG antibody titers at the time of positive blood PCR, at diagnosis, and at peak levels during chronic Q fever. We evaluated 200 patients, of whom 93 (46.5%) had proven, 51 (25.5%) had probable, and 56 (28.0%) had possible chronic Q fever. Sixty-five percent of proven cases had positive Coxiella burnetii PCR results for blood, which was associated with high phase I IgG. Median phase I IgG titers at diagnosis and peak titers in patients with proven chronic Q fever were significantly higher than those for patients with probable and possible chronic Q fever. The positive predictive values for proven chronic Q fever, compared to possible chronic Q fever, at titers 1:1,024, 1:2,048, 1:4,096, and ≥1:8,192 were 62.2%, 66.7%, 76.5%, and ≥86.2%, respectively. However, sensitivity dropped to <60% when cutoff titers of ≥1:8,192 were used. Although our study demonstrated a strong association between high phase I IgG titers and proven chronic Q fever, increasing the current diagnostic phase I IgG cutoff to >1:1,024 is not recommended due to increased false-negative findings (sensitivity < 60%) and the high morbidity and mortality of untreated chronic Q fever. Our study emphasizes that serologic results are not diagnostic on their own but should always be interpreted in combination with clinical parameters.