Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fish Biol ; 103(2): 280-291, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37102404

RESUMO

Metabolic scope represents the aerobic energy budget available to an organism to perform non-maintenance activities (e.g., escape a predator, recover from a fisheries interaction, compete for a mate). Conflicting energetic requirements can give rise to ecologically relevant metabolic trade-offs when energy budgeting is constrained. The objective of this study was to investigate how aerobic energy is utilized when individual sockeye salmon (Oncorhynchus nerka) are exposed to multiple acute stressors. To indirectly assess metabolic changes in free-swimming individuals, salmon were implanted with heart rate biologgers. The animals were then exercised to exhaustion or briefly handled as a control, and allowed to recover from this stressor for 48 h. During the first 2 h of the recovery period, individual salmon were exposed to 90 ml of conspecific alarm cues or water as a control. Heart rate was recorded throughout the recovery period. Recovery effort and time was higher in exercised fish, relative to control fish, whereas exposure to an alarm cue had no effect on either of these metrics. Individual routine heart rate was negatively correlated with recovery time and effort. Together, these findings suggest that metabolic energy allocation towards exercise recovery (i.e., an acute stressor; handling, chase, etc.) trumps anti-predator responses in salmon, although individual variation may mediate this effect at the population level.


Assuntos
Migração Animal , Salmão , Animais , Salmão/fisiologia , Migração Animal/fisiologia , Peixes , Natação/fisiologia , Consumo de Oxigênio/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-35167975

RESUMO

The capacity to extract oxygen from the water, and the ability of the heart to drive tissue oxygen transport, are fundamental determinants of important life-history performance traits in fish. Cardiac performance is in turn dependent on the heart's own oxygen supply, which in some teleost species is partly delivered via a coronary circulation originating directly from the gills that perfuses the heart, and is crucial for cardiac, metabolic and locomotory capacities. It is currently unknown, however, how a compromised branchial blood flow (e.g., by angling-induced hook damage to the gills), constraining oxygen uptake and coronary blood flow, affects the energetically demanding parental care behaviours and reproductive fitness in fish. Here, we tested the hypothesis that blocking » of the branchial blood flow and abolishing coronary blood flow would negatively affect parental care behaviours, cardiac performance (heart rate metrics, via implanted Star-Oddi heart rate loggers) and reproductive fitness of paternal smallmouth bass (Micropterus dolomieu). Our findings reveal that branchial/coronary ligation compromised reproductive fitness, as reflected by a lower proportion of broods reaching free-swimming fry and a tendency for a higher nest abandonment rate relative to sham operated control fish. While this was associated with a tendency for a reduced aggression in ligated fish, parental care behaviours were largely unaffected by the ligation. Moreover, the ligation did not impair any of the heart rate performance metrics. Our findings highlight that gill damage may compromise reproductive output of smallmouth bass populations during the spawning season. Yet, the mechanism(s) behind this finding remains elusive.


Assuntos
Bass , Animais , Aptidão Genética , Coração , Frequência Cardíaca , Oxigênio
3.
Artigo em Inglês | MEDLINE | ID: mdl-31004808

RESUMO

Research in a variety of vertebrate taxa has found that cardiac function is a major limiting factor in the ability of animals to cope with physiological challenges, and thus is suggested to play an important role in mediating fitness-related behaviors in the wild. Yet, there remains a paucity of empirical assessments of the relationships between physiological performance and biological fitness in wild animals, partially due to challenges in measuring these metrics remotely. Using male smallmouth bass (Micropterus dolomieu) as a model, we tested for relationships between cardiac performance (measured using heart rate biologgers) and fitness-related behaviors (assessed using videography and snorkeler observations) in the wild during the parental care period. Our results showed that heart rates were not significantly related to any measured parental care behaviors (e.g., nest tending) except for individual aggression level. After accounting for the effect of water temperature on heart rate, we found within-individual heart rate differed between days and also differed between nights. There was, however, evidence of diel variation in heart rate, where heart rate was higher during the day than at night. Although fitness is thought to be dependent on physiological capacity for exercise in wild animals, inter-individual variation in heart rate alone does not appear to relate to parental care behavior in smallmouth bass at the temporal scales examined here (i.e., hours to days). Further studies are required to confirm relationships between physiological performance and parental care behavior to elucidate the apparently complex relationships between physiology, behavior, and fitness in wild animals.


Assuntos
Bass/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Coração/fisiologia , Comportamento de Nidação/fisiologia , Agressão/fisiologia , Animais , Animais Selvagens , Bass/genética , Feminino , Frequência Cardíaca/fisiologia , Hidrocortisona/metabolismo , Masculino
4.
Conserv Physiol ; 7(1): coz020, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110769

RESUMO

Airguns used for offshore seismic exploration by the oil and gas industry contribute to globally increasing anthropogenic noise levels in the marine environment. There is concern that the omnidirectional, high intensity sound pulses created by airguns may alter fish physiology and behaviour. A controlled short-term field experiment was performed to investigate the effects of sound exposure from a seismic airgun on the physiology and behaviour of two socioeconomically and ecologically important marine fishes: the Atlantic cod (Gadus morhua) and saithe (Pollachius virens). Biologgers recording heart rate and body temperature and acoustic transmitters recording locomotory activity (i.e. acceleration) and depth were used to monitor free-swimming individuals during experimental sound exposures (18-60 dB above ambient). Fish were held in a large sea cage (50 m diameter; 25 m depth) and exposed to sound exposure trials over a 3-day period. Concurrently, the behaviour of untagged cod and saithe was monitored using video recording. The cod exhibited reduced heart rate (bradycardia) in response to the particle motion component of the sound from the airgun, indicative of an initial flight response. No behavioural startle response to the airgun was observed; both cod and saithe changed both swimming depth and horizontal position more frequently during sound production. The saithe became more dispersed in response to the elevated sound levels. The fish seemed to habituate both physiologically and behaviourally with repeated exposure. In conclusion, the sound exposures induced over the time frames used in this study appear unlikely to be associated with long-term alterations in physiology or behaviour. However, additional research is needed to fully understand the ecological consequences of airgun use in marine ecosystems.

5.
Conserv Physiol ; 5(1): cox050, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28928974

RESUMO

Selective harvest policies have been implemented in North America to enhance the conservation of Pacific salmon (Oncorhynchus spp.) stocks, which has led to an increase in the capture and release of fish by all fishing sectors. Despite the immediate survival benefits, catch-and-release results in capture stress, particularly at high water temperatures, and this can result in delayed post-release mortality minutes to days later. The objective of this study was to evaluate how different water temperatures influenced heart rate disturbance and recovery of wild sockeye salmon (Oncorhynchus nerka) following fisheries interactions (i.e. exhaustive exercise). Heart rate loggers were implanted into Fraser River sockeye salmon prior to simulated catch-and-release events conducted at three water temperatures (16°C, 19°C and 21°C). The fisheries simulation involved chasing logger-implanted fish in tanks for 3 min, followed by a 1 min air exposure. Neither resting nor routine heart rate differed among temperature treatments. In response to the fisheries simulation, peak heart rate increased with temperature (16°C = 91.3 ± 1.3 beats min-1; 19°C = 104.9 ± 2.0 beats min-1 and 21°C = 117 ± 1.3 beats min-1). Factorial heart rate and scope for heart rate were highest at 21°C and lowest at 16°C, but did not differ between 19°C and 21°C. Temperature affected the initial rate of cardiac recovery but not the overall duration (~10 h) such that the rate of energy expenditure during recovery increased with temperature. These findings support the notion that in the face of climate change, efforts to reduce stress at warmer temperatures will be necessary if catch-and-release practices are to be an effective conservation strategy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa