Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Dermatol ; 30(1): 162-168, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32592422

RESUMO

BACKGROUND: Systemic sclerosis is an autoimmune skin disease which is associated with inflammation and resulting skin fibrosis. Myofibroblasts are the key cell type associated with the fibrosis but how they are differentiated is not clear. DKK-1 is a Wnt antagonist that blocks Wnt-mediated fibrosis and is reduced in fibrotic conditions. Thus, DKK-1 is a clear negative regulator of fibrosis in systemic sclerosis and its regulation is unknown. The aim of this work is to determine the levels of DKK-1 in serum and tissues of SSc and its regulation. METHODS: Skin biopsies were taken from early diffuse systemic sclerosis patients and healthy controls and DKK-1 measured by ELISA; serum was also isolated and DKK-1 quantified. DKK-1 was also measured by qRT-PCR. MicroRNA33a-3p was measured by TaqMan PCR. miR mimics and controls were transfected into dermal fibroblasts. Bleomycin mouse model was employed and compared to vehicle control treated mice, and gene expression was employed for DKK-1 and various extracellular matrix genes. RESULTS: DKK-1 is reduced in SSc skin and fibroblasts but is not reduced in the circulation in patients. MicroRNA33a-3p regulates DKK-1 levels epigenetically and is significantly reduced in SSc cells and whole tissue. DKK-1 is also reduced in the bleomycin mouse model and pro-fibrotic genes elevated. CONCLUSION: DKK-1 is reduced in SSc cells and is regulated by miR33a-3p, and restoring DKK-1 levels through epigenetic means could be a therapeutic target in systemic sclerosis.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , MicroRNAs/metabolismo , Escleroderma Sistêmico/metabolismo , Idoso , Animais , Proteína Axina/genética , Bleomicina , Estudos de Casos e Controles , Células Cultivadas , Biologia Computacional , Modelos Animais de Doenças , Epigênese Genética , Feminino , Fibroblastos , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Masculino , MicroRNAs/genética , RNA Mensageiro/metabolismo , Escleroderma Sistêmico/sangue , Escleroderma Sistêmico/induzido quimicamente , Proteínas Wnt/antagonistas & inibidores , Via de Sinalização Wnt
2.
Front Cell Dev Biol ; 9: 681061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150776

RESUMO

OBJECTIVE: Systemic Sclerosis is an autoimmune connective tissue disease which results in fibrosis of the skin and lungs. The disease is characterized by activation of myofibroblasts but what governs this is unknown. Gremlin-1 is a BMP antagonist that is developmentally regulated and we sought to investigate its role in Systemic Sclerosis. METHODS: Dermal fibroblasts were transfected with Grem1pcDNA3.1 expression vectors or empty vectors. Various markers of myofibroblasts were measured at the mRNA and protein levels. Scratch wound assays were also performed. Media Transfer experiments were performed to evaluate cytokine like effects. Various inhibitors of TGF-ß signaling and MAPK signaling were used post-transfection. siRNA to Gremlin-1 in SSc dermal fibroblasts were performed to evaluate the role of Gremlin-1. Different cytokines were incubated with fibroblasts and Gremlin-1 measured. Bleomycin was used as model of fibrosis and immunohistochemistry performed. RESULTS: Overexpression of Gremlin-1 was achieved in primary dermal fibroblasts and lead to activation of quiescent cells to myofibroblasts indicated by collagen and α-Smooth muscle actin. Overexpression also led to functional effects. This was associated with increased TGF-ß1 levels and SBE luciferase activity but not increased Thrombospondin-1 expression. Inhibition of Gremlin-1 overexpression cells with antibodies to TGF-ß1 but not isotype controls led to reduced collagen and various TGF-ß pathway chemical inhibitors also led to reduced collagen levels. In SSc cells siRNA mediated reduction of Gremlin-1 reduced collagen expression and CTGF gene and protein levels in these cells. IL-13 did not lead to elevated Gremlin-1 expression nor did IL-11. Gremlin-1 was elevated in an animal model of fibrosis compared to NaCl-treated mice. CONCLUSION: Gremlin-1 is a key regulator of myofibroblast transition leading to enhanced ECM deposition. Strategies that block Gremlin-1 maybe a possible therapeutic target in fibrotic diseases such as SSc.

3.
Stem Cells ; 26(6): 1609-19, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18356573

RESUMO

The corneal epithelium is maintained by stem cells located at the periphery of the cornea in a region known as the limbus. Depletion of limbal stem cells (LSCs) results in limbal stem cell deficiency. Treatments for this disease are based on limbal replacement or transplantation of ex vivo expanded LSCs. It is, therefore, crucial to identify cell surface markers for LSCs that can be used for their enrichment and characterization. Aldehyde dehydrogenases (ALDHs) are enzymes which protect cells from the toxic effects of peroxidic aldehydes. In this manuscript, we show for the first time that ALDH1 is absent from the basal cells of the limbal and corneal epithelium. We separated limbal epithelial cells on the basis of ALDH activity and showed that ALDH(dim) cells expressed significantly higher levels of DeltaNp63 and ABCG2 as well as having a greater colony forming efficiency (CFE) when compared to ALDH(bright) cells. Large scale transcriptional analysis of these two populations led to identification of a new cell surface marker, RHAMM/HMMR, which is located in all layers of corneal epithelium and in the suprabasal layers of the limbal epithelium but is completely absent from the basal layer of the limbus. Our studies indicate that absence of RHAMM/HMMR expression is correlated with properties associated with LSCs. RHAMM/HMMR- limbal epithelial cells are smaller in size, express negligible CK3, have higher levels of DeltaNp63 and have a higher CFE compared to RHAMM/HMMR+ cells. Taken together these results suggest a putative role for RHAMM/ HMMR as a negative marker of stem cell containing limbal epithelial cells. Cell selection based on Hoechst exclusion and lack of cell surface RHAMM/HMMR expression resulted in increased colony forming efficiency compared to negative selection using RHAMM/HMMR alone or positive selection using Hoechst on its own. Combination of these two cell selection methods presents a novel method for LSC enrichment and characterization. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Epitélio Corneano/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Receptores de Hialuronatos/fisiologia , Células-Tronco/fisiologia , Células 3T3 , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1 , Animais , Biomarcadores/análise , Técnicas de Cultura de Células/métodos , Ensaio de Unidades Formadoras de Colônias , Córnea/citologia , Córnea/enzimologia , Córnea/fisiologia , Epitélio Corneano/citologia , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/genética , Humanos , Imuno-Histoquímica , Camundongos , Proteínas de Neoplasias/genética , Retinal Desidrogenase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa