Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Neuropathol Appl Neurobiol ; 49(2): e12902, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951214

RESUMO

AIMS: Amyotrophic lateral sclerosis (ALS) is characterised by a progressive loss of upper and lower motor neurons leading to muscle weakness and eventually death. Frontotemporal dementia (FTD) presents clinically with significant behavioural decline. Approximately 10% of cases have a known family history, and disease-linked mutations in multiple genes have been identified in FTD and ALS. More recently, ALS and FTD-linked variants have been identified in the CCNF gene, which accounts for an estimated 0.6% to over 3% of familial ALS cases. METHODS: In this study, we developed the first mouse models expressing either wild-type (WT) human CCNF or its mutant pathogenic variant S621G to recapitulate key clinical and neuropathological features of ALS and FTD linked to CCNF disease variants. We expressed human CCNF WT or CCNFS621G throughout the murine brain by intracranial delivery of adeno-associated virus (AAV) to achieve widespread delivery via somatic brain transgenesis. RESULTS: These mice developed behavioural abnormalities, similar to the clinical symptoms of FTD patients, as early as 3 months of age, including hyperactivity and disinhibition, which progressively deteriorated to include memory deficits by 8 months of age. Brains of mutant CCNF_S621G mice displayed an accumulation of ubiquitinated proteins with elevated levels of phosphorylated TDP-43 present in both CCNF_WT and mutant CCNF_S621G mice. We also investigated the effects of CCNF expression on interaction targets of CCNF and found elevated levels of insoluble splicing factor proline and glutamine-rich (SFPQ). Furthermore, cytoplasmic TDP-43 inclusions were found in both CCNF_WT and mutant CCNF_S621G mice, recapitulating the key hallmark of FTD/ALS pathology. CONCLUSIONS: In summary, CCNF expression in mice reproduces clinical presentations of ALS, including functional deficits and TDP-43 neuropathology with altered CCNF-mediated pathways contributing to the pathology observed.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Animais , Camundongos , Lactente , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/patologia , Neurônios Motores/patologia , Mutação , Proteínas de Ligação a DNA/metabolismo , Ciclinas/genética , Ciclinas/metabolismo
2.
Brain ; 143(6): 1889-1904, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32375177

RESUMO

Hyperphosphorylation and deposition of tau in the brain characterizes frontotemporal dementia and Alzheimer's disease. Disease-associated mutations in the tau-encoding MAPT gene have enabled the generation of transgenic mouse models that recapitulate aspects of human neurodegenerative diseases, including tau hyperphosphorylation and neurofibrillary tangle formation. Here, we characterized the effects of transgenic P301S mutant human tau expression on neuronal network function in the murine hippocampus. Onset of progressive spatial learning deficits in P301S tau transgenic TAU58/2 mice were paralleled by long-term potentiation deficits and neuronal network aberrations during electrophysiological and EEG recordings. Gene-expression profiling just prior to onset of apparent deficits in TAU58/2 mice revealed a signature of immediate early genes that is consistent with neuronal network hypersynchronicity. We found that the increased immediate early gene activity was confined to neurons harbouring tau pathology, providing a cellular link between aberrant tau and network dysfunction. Taken together, our data suggest that tau pathology drives neuronal network dysfunction through hyperexcitation of individual, pathology-harbouring neurons, thereby contributing to memory deficits.


Assuntos
Tauopatias/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Demência Frontotemporal/genética , Hipocampo/metabolismo , Potenciação de Longa Duração/genética , Masculino , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Fosforilação , Tauopatias/fisiopatologia
3.
J Neurosci ; 39(48): 9645-9659, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31641049

RESUMO

Sphingosine 1-phosphate (S1P) is a potent vasculoprotective and neuroprotective signaling lipid, synthesized primarily by sphingosine kinase 2 (SK2) in the brain. We have reported pronounced loss of S1P and SK2 activity early in Alzheimer's disease (AD) pathogenesis, and an inverse correlation between hippocampal S1P levels and age in females, leading us to speculate that loss of S1P is a sensitizing influence for AD. Paradoxically, SK2 was reported to mediate amyloid ß (Aß) formation from amyloid precursor protein (APP) in vitro To determine whether loss of S1P sensitizes to Aß-mediated neurodegeneration, we investigated whether SK2 deficiency worsens pathology and memory in male J20 (PDGFB-APPSwInd) mice. SK2 deficiency greatly reduced Aß content in J20 mice, associated with significant improvements in epileptiform activity and cross-frequency coupling measured by hippocampal electroencephalography. However, several key measures of APPSwInd-dependent neurodegeneration were enhanced on the SK2-null background, despite reduced Aß burden. These included hippocampal volume loss, oligodendrocyte attrition and myelin loss, and impaired performance in Y-maze and social novelty memory tests. Inhibition of the endosomal cholesterol exporter NPC1 greatly reduced sphingosine phosphorylation in glial cells, linking loss of SK2 activity and S1P in AD to perturbed endosomal lipid metabolism. Our findings establish SK2 as an important endogenous regulator of both APP processing to Aß, and oligodendrocyte survival, in vivo These results urge greater consideration of the roles played by oligodendrocyte dysfunction and altered membrane lipid metabolic flux as drivers of neurodegeneration in AD.SIGNIFICANCE STATEMENT Genetic, neuropathological, and functional studies implicate both Aß and altered lipid metabolism and/or signaling as key pathogenic drivers of Alzheimer's disease. In this study, we first demonstrate that the enzyme SK2, which generates the signaling lipid S1P, is required for Aß formation from APP in vivo Second, we establish a new role for SK2 in the protection of oligodendrocytes and myelin. Loss of SK2 sensitizes to Aß-mediated neurodegeneration by attenuating oligodendrocyte survival and promoting hippocampal atrophy, despite reduced Aß burden. Our findings support a model in which Aß-independent sensitizing influences such as loss of neuroprotective S1P are more important drivers of neurodegeneration than gross Aß concentration or plaque density.


Assuntos
Doença de Alzheimer/metabolismo , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Placa Amiloide/metabolismo , Doença de Alzheimer/patologia , Animais , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/prevenção & controle , Feminino , Hipocampo/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neuroproteção/fisiologia , Técnicas de Cultura de Órgãos , Tamanho do Órgão/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Placa Amiloide/patologia
4.
J Biol Chem ; 294(38): 14149-14162, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31366728

RESUMO

The microtubule-associated protein tau undergoes aberrant modification resulting in insoluble brain deposits in various neurodegenerative diseases, including frontotemporal dementia (FTD), progressive supranuclear palsy, and corticobasal degeneration. Tau aggregates can form in different cell types of the central nervous system (CNS) but are most prevalent in neurons. We have previously recapitulated aspects of human FTD in mouse models by overexpressing mutant human tau in CNS neurons, including a P301S tau variant in TAU58/2 mice, characterized by early-onset and progressive behavioral deficits and FTD-like neuropathology. The molecular mechanisms underlying the functional deficits of TAU58/2 mice remain mostly elusive. Here, we employed functional genomics (i.e. RNAseq) to determine differentially expressed genes in young and aged TAU58/2 mice to identify alterations in cellular processes that may contribute to neuropathy. We identified genes in cortical brain samples differentially regulated between young and old TAU58/2 mice relative to nontransgenic littermates and by comparative analysis with a dataset of CNS cell type-specific genes expressed in nontransgenic mice. Most differentially-regulated genes had known or putative roles in neurons and included presynaptic and excitatory genes. Specifically, we observed changes in presynaptic factors, glutamatergic signaling, and protein scaffolding. Moreover, in the aged mice, expression levels of several genes whose expression was annotated to occur in other brain cell types were altered. Immunoblotting and immunostaining of brain samples from the TAU58/2 mice confirmed altered expression and localization of identified and network-linked proteins. Our results have revealed genes dysregulated by progressive tau accumulation in an FTD mouse model.


Assuntos
Tauopatias/genética , Tauopatias/metabolismo , Proteínas tau/genética , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Demência Frontotemporal/genética , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Análise de Sequência de RNA/métodos , Tauopatias/fisiopatologia , Proteínas tau/metabolismo
5.
Am J Pathol ; 188(6): 1447-1456, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29577934

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing and fatal disease characterized by muscular atrophy because of loss of upper and lower motor neurons. Histopathologically, most patients with ALS have abnormal cytoplasmic accumulation and aggregation of the nuclear RNA-regulating protein TAR DNA-binding protein 43 (TDP-43). Pathogenic mutations in the TARDBP gene that encode TDP-43 have been identified in familial ALS. We have previously reported transgenic mice with neuronal expression of human TDP-43 carrying the pathogenic A315T mutation (iTDP-43A315T mice), presenting with early-onset motor deficits in adolescent animals. Here, we analyzed aged iTDP-43A315T mice, focusing on the spatiotemporal profile and progression of neurodegeneration in upper and lower motor neurons. Magnetic resonance imaging and histologic analysis revealed a differential loss of upper motor neurons in a hierarchical order as iTDP-43A315T mice aged. Furthermore, we report progressive gait problems, profound motor deficits, and muscle atrophy in aged iTDP-43A315T mice. Despite these deficits and TDP-43 pathologic disorders in lower motor neurons, stereological analysis did not show cell loss in spinal cords. Taken together, neuronal populations in aging iTDP-43A315T mice show differential susceptibility to the expression of human TDP-43A315T.


Assuntos
Sistema Nervoso Central/patologia , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Transtornos Motores/patologia , Atrofia Muscular/patologia , Doenças Neurodegenerativas/patologia , Envelhecimento , Animais , Sistema Nervoso Central/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos Motores/genética , Transtornos Motores/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Análise Espaço-Temporal
6.
J Neurophysiol ; 118(3): 1542-1555, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28659459

RESUMO

Nonspatially selective attention is based on the notion that specific features or objects in the visual environment are effectively prioritized in cortical visual processing. Feature-based attention (FBA), in particular, is a well-studied process that dynamically and selectively addresses neurons preferentially processing the attended feature attribute (e.g., leftward motion). In everyday life, however, behavior may require high sensitivity for an entire feature dimension (e.g., motion), but experimental evidence for a feature dimension-specific attentional modulation on a cellular level is lacking. Therefore, we investigated neuronal activity in macaque motion-selective mediotemporal area (MT) in an experimental setting requiring the monkeys to detect either a motion change or a color change. We hypothesized that neural activity in MT is enhanced when the task requires perceptual sensitivity to motion. In line with this, we found that mean firing rates were higher in the motion task and that response variability and latency were lower compared with values in the color task, despite identical visual stimulation. This task-specific, dimension-based modulation of motion processing emerged already in the absence of visual input, was independent of the relation between the attended and stimulating motion direction, and was accompanied by a spatially global reduction of neuronal variability. The results provide single-cell support for the hypothesis of a feature dimension-specific top-down signal emphasizing the processing of an entire feature class.NEW & NOTEWORTHY Cortical processing serving visual perception prioritizes information according to current task requirements. We provide evidence in favor of a dimension-based attentional mechanism addressing all neurons that process visual information in the task-relevant feature domain. Behavioral tasks required monkeys to attend either color or motion, causing modulations of response strength, variability, latency, and baseline activity of motion-selective monkey area MT neurons irrespective of the attended motion direction but specific to the attended feature dimension.


Assuntos
Atenção , Percepção de Movimento , Lobo Temporal/fisiologia , Animais , Macaca mulatta , Masculino , Neurônios/fisiologia , Lobo Temporal/citologia
7.
Neuropathol Appl Neurobiol ; 41(7): 906-25, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25763777

RESUMO

AIM: Tau becomes hyperphosphorylated in Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD-tau), resulting in functional deficits of neurones, neurofibrillary tangle (NFT) formation and eventually dementia. Expression of mutant human tau in the brains of transgenic mice has produced different lines that recapitulate various aspects of FTLD-tau and AD. In this study, we characterized the novel P301S mutant tau transgenic mouse line, TAU58/2. METHODS: Both young and aged TAU58/2 mice underwent extensive motor testing, after which brain tissue was analysed with immunohistochemistry, silver staining, electron microscopy and Western blotting. Tissue from various FTLD subtypes and AD patients was also analysed for comparison. RESULTS: TAU58/2 mice presented with early-onset motor deficits, which became more pronounced with age. Throughout the brains of these mice, tau was progressively hyperphosphorylated resulting in increased NFT formation with age. In addition, frequent axonal swellings that stained intensively for neurofilament (NF) were present in young TAU58/2 mice prior to NFT formation. Similar axonal pathology was also observed in human FTLD-tau and AD. Interestingly, activated microglia were found in close proximity to neurones harbouring transgenic tau, but were not associated with NF-positive axonal swellings. CONCLUSIONS: In TAU58/2 mice, early tau pathology induces functional deficits of neurones associated with NF pathology. This appears to be specific to tau, as similar changes are observed in FTLD-tau, but not in FTLD with TDP-43 inclusions. Therefore, TAU58/2 mice recapitulate aspects of human FTLD-tau and AD pathology, and will become instrumental in studying disease mechanisms and therapeutics in the future.


Assuntos
Axônios/patologia , Encéfalo/patologia , Degeneração Lobar Frontotemporal/patologia , Neurônios/patologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
8.
Neuron ; 112(8): 1249-1264.e8, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366598

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by cytoplasmic deposition of the nuclear TAR-binding protein 43 (TDP-43). Although cytoplasmic re-localization of TDP-43 is a key event in the pathogenesis of ALS/FTD, the underlying mechanisms remain unknown. Here, we identified a non-canonical interaction between 14-3-3θ and TDP-43, which regulates nuclear-cytoplasmic shuttling. Neuronal 14-3-3θ levels were increased in sporadic ALS and FTD with TDP-43 pathology. Pathogenic TDP-43 showed increased interaction with 14-3-3θ, resulting in cytoplasmic accumulation, insolubility, phosphorylation, and fragmentation of TDP-43, resembling pathological changes in disease. Harnessing this increased affinity of 14-3-3θ for pathogenic TDP-43, we devised a gene therapy vector targeting TDP-43 pathology, which mitigated functional deficits and neurodegeneration in different ALS/FTD mouse models expressing mutant or non-mutant TDP-43, including when already symptomatic at the time of treatment. Our study identified 14-3-3θ as a mediator of cytoplasmic TDP-43 localization with implications for ALS/FTD pathogenesis and therapy.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , Neurônios/metabolismo
9.
Sci Adv ; 9(23): eadg2248, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37285437

RESUMO

Numerous viruses use specialized surface molecules called fusogens to enter host cells. Many of these viruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can infect the brain and are associated with severe neurological symptoms through poorly understood mechanisms. We show that SARS-CoV-2 infection induces fusion between neurons and between neurons and glia in mouse and human brain organoids. We reveal that this is caused by the viral fusogen, as it is fully mimicked by the expression of the SARS-CoV-2 spike (S) protein or the unrelated fusogen p15 from the baboon orthoreovirus. We demonstrate that neuronal fusion is a progressive event, leads to the formation of multicellular syncytia, and causes the spread of large molecules and organelles. Last, using Ca2+ imaging, we show that fusion severely compromises neuronal activity. These results provide mechanistic insights into how SARS-CoV-2 and other viruses affect the nervous system, alter its function, and cause neuropathology.


Assuntos
COVID-19 , Animais , Humanos , Camundongos , SARS-CoV-2/fisiologia , Neurônios , Encéfalo , Neuroglia
10.
Behav Brain Res ; 425: 113812, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35202719

RESUMO

Frontotemporal dementia (FTD) and Alzheimer's disease (AD) share the pathological hallmark of intracellular neurofibrillary tangles, which result from the hyperphosphorylation of microtubule associated protein tau. The P301S mutation in human tau carried by TAU58/2 transgenic mice results in brain pathology and behavioural deficits relevant to FTD and AD. The phytocannabinoid cannabidiol (CBD) exhibits properties beneficial for multiple pathological processes evident in dementia. Therefore, 14-month-old female TAU58/2 transgenic and wild type-like (WT) littermates were treated with 100 mg/kg CBD or vehicle i.p. starting three weeks prior to conducting behavioural paradigms relevant to FTD and AD. TAU58/2 females exhibited impaired motor function, reduced bodyweight and less anxiety behaviour compared to WT. Impaired spatial reference memory of vehicle-treated transgenic mice was restored by chronic CBD treatment. Chronic CBD also reduced anxiety-like behaviours and decreased contextual fear-associated freezing in all mice. Chronic remedial CBD treatment ameliorated several disease-relevant phenotypes in 14-month-old TAU58/2 transgenic mice, suggesting potential for the treatment of tauopathy-related behavioural impairments including cognitive deficits.


Assuntos
Doença de Alzheimer , Canabidiol , Demência Frontotemporal , Tauopatias , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Canabidiol/farmacologia , Modelos Animais de Doenças , Feminino , Demência Frontotemporal/tratamento farmacológico , Demência Frontotemporal/genética , Transtornos da Memória/tratamento farmacológico , Camundongos , Camundongos Transgênicos , Memória Espacial , Tauopatias/tratamento farmacológico , Proteínas tau/genética , Proteínas tau/metabolismo
11.
Sci Adv ; 8(48): eadd2577, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459557

RESUMO

Hyperphosphorylated microtubule-associated protein tau has been implicated in dementia, epilepsy, and other neurological disorders. In contrast, site-specific phosphorylation of tau at threonine 205 (T205) by the kinase p38γ was shown to disengage tau from toxic pathways, serving a neuroprotective function in Alzheimer's disease. Using a viral-mediated gene delivery approach in different mouse models of epilepsy, we show that p38γ activity-enhancing treatment reduces seizure susceptibility, restores neuronal firing patterns, reduces behavioral deficits, and ameliorates epilepsy-induced deaths. Furthermore, we show that p38γ-mediated phosphorylation of tau at T205 is essential for this protection in epilepsy, as a lack of this critical interaction reinstates pathological features and accelerates epilepsy in vivo. Hence, our work provides a scope to harness p38γ as a future therapy applicable to acute neurological conditions.


Assuntos
Doença de Alzheimer , Epilepsia , Animais , Camundongos , Epilepsia/genética , Epilepsia/terapia , Convulsões/genética , Convulsões/terapia , Fosforilação , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Modelos Animais de Doenças
12.
Behav Brain Res ; 397: 112943, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33017638

RESUMO

Frontotemporal dementia (FTD) and Alzheimer's disease (AD) exhibit intracellular inclusions [neurofibrillary tangles (NFT's)] of microtubule-associated protein tau that contributes to neuronal dysfunction and death. Mutations in the microtubule-associated protein tau (MAPT) gene leads to tau hyperphosphorylation and promotes NFT formation. The TAU58/2 transgenic mouse model expresses mutant human tau (P301S mutation) and exhibits behavioural abnormalities relevant to dementia in early adulthood. Here we comprehensively determined the behavioural phenotype of TAU58/2 transgenic female mice at 14 months of age using test paradigms relevant to FTD and AD. TAU58/2 females showed a significant motor deficit and lower bodyweight compared to WT littermates. Transgenic females failed to habituate to the test arena in the light-dark test. Interestingly, transgenics did not exhibit an anxiolytic-like phenotype and intermediate-term spatial learning in the cheeseboard test was intact. However, a significant learning deficit was detected in the 1st trial across test days indicating impaired long-term spatial memory. In addition, the preference for a previously rewarded location was absent in transgenic females during probe trial testing. Finally, TAU58/2 mice had a defective acoustic startle response and impaired sensorimotor gating. In conclusion TAU58/2 mice exhibit several behavioural deficits that resemble those observed in human FTD and AD. Additionally, we observed a novel startle response deficit in these mice. At 14 months of age, TAU58/2 females represent a later disease stage and are therefore a potentially useful model to test efficacy of therapeutics to reverse or ameliorate behavioural deficits in post-onset tauopapthy-related neurodegenerative disorders.


Assuntos
Comportamento Animal/fisiologia , Demência/fisiopatologia , Modelos Animais de Doenças , Reflexo de Sobressalto/fisiologia , Tauopatias/fisiopatologia , Proteínas tau/genética , Fatores Etários , Doença de Alzheimer/fisiopatologia , Animais , Feminino , Demência Frontotemporal/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Mutantes , Fenótipo
13.
Pharmacol Biochem Behav ; 196: 172970, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32562718

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline, motor impairments, and accumulation of hallmark proteins, amyloid-beta (Aß) and tau. Traditionally, transgenic mouse models for AD have focused on Aß pathology, however, recently a number of tauopathy transgenic models have been developed, including the TAU58/2 transgenic model. Cannabidiol (CBD), a non-toxic constituent of the Cannabis sativa plant, has been shown to prevent and reverse cognitive deficits in Aß transgenic mouse models of AD. Importantly, the therapeutic properties of CBD on the behavioural phenotype of tauopathy mouse models have not been investigated. We assessed the impact of chronic CBD treatment (i.e. 50 mg/kg CBD i.p. administration starting 3 weeks prior to behavioural assessments) on disease-relevant behaviours of 4-month-old TAU58/2 transgenic males in paradigms for anxiety, motor functions, and cognition. TAU58/2 transgenic males demonstrated reduced body weight, anxiety and impaired motor functions. Furthermore, they demonstrated increased freezing in fear conditioning compared to wild type-like animals. Interestingly, both sociability and social recognition memory were intact in AD transgenic mice. Chronic CBD treatment did not affect behavioural changes in transgenic males. In summary, 4-month-old TAU58/2 transgenic males exhibited no deficits in social recognition memory, suggesting that motor deficits and changes in anxiety at this age do not impact on social domains. The moderate increase in fear-associated memory needs further investigation but could be related to differences in fear extinction. Future investigations will need to clarify CBD's therapeutic potential for reversing motor deficits in TAU58/2 transgenic mice by considering alternative CBD treatment designs including changed CBD dosing.


Assuntos
Canabidiol/administração & dosagem , Proteínas tau/genética , Animais , Ansiedade/genética , Comportamento Animal , Peso Corporal , Extinção Psicológica , Masculino , Camundongos , Camundongos Transgênicos
14.
Neuroscience ; 431: 166-175, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32058066

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterised by progressive cognitive decline and the accumulation of two hallmark proteins, amyloid-beta (Aß) and tau. Traditionally, transgenic mouse models for AD have generally focused on Aß pathology, however, in recent years a number of tauopathy transgenic mouse models have been developed, including the TAU58/2 mouse model. These mice develop tau pathology and neurofibrillary tangles from 2 months of age and show motor impairments and alterations in the behavioural response to elevated plus maze (EPM) testing. The cognitive and social phenotype of this model has not yet been assessed comprehensively. Furthermore, the behavioural changes seen in the EPM have previously been linked to both anxiety and disinhibitory phenotypes. Thus, this study assessed 4-month-old TAU58/2 males comprehensively for disinhibitory and social behaviours, social recognition memory, and sensorimotor gating. TAU58/2 males demonstrated reduced exploration and anxiety-like behaviours but no changes to disinhibitory behaviours, reduced sociability in the social preference test and impaired acoustic startle and prepulse inhibition. Aggressive and socio-positive behaviours were not affected except a reduction in the occurrence of nosing and anogenital sniffing. Our study identified new phenotypic characteristics of young adult male TAU58/2 transgenic mice and clarified the nature of changes detected in the behavioural response of these mice to EPM testing. Social withdrawal and inappropriate social behaviours are common symptoms in both AD and FTD patients and impaired sensorimotor gating is seen in moderate-late stage AD, emphasising the relevance of the TAU58/2 model to these diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Tauopatias , Doença de Alzheimer/genética , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Emaranhados Neurofibrilares , Tauopatias/genética , Proteínas tau/genética
15.
Sci Rep ; 10(1): 13845, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796905

RESUMO

Antibodies have been explored extensively as a potential therapeutic for Alzheimer's disease, where amyloid-ß (Aß) peptides and the tau protein deposit in patient brains. While the major focus of antibody-based therapy development was on Aß, arguably with limited success in clinical trials, targeting tau has become an emerging strategy, possibly extending therapies to dementias with isolated tau pathology. Interestingly, low titres of autoantibodies to pathological tau have been described in humans and transgenic mouse models, but their pathophysiological relevance remained elusive. Here, we used two independent approaches to deplete the B-cell lineage and hence antibody formation in human P301S mutant tau transgenic mice, TAU58/2. TAU58/2 mice were either crossed with the B-cell-deficient Ighm knockout line (muMT-/-) or treated with anti-CD20 antibodies that target B-cell precursors. In both models, B-cell depletion significantly reduced astrocytosis in TAU58/2 mice. Only when B-cells were absent throughout life, in TAU58/2.muMT-/- mice, were spatial learning deficits moderately aggravated while motor performance improved as compared to B-cell-competent TAU58/2 mice. This was associated with changes in brain region-specific tau solubility. No other relevant behavioural or neuropathological changes were observed in TAU58/2 mice in the absence of B-cells/antibodies. Taken together, our data suggests that the presence of antibodies throughout life contributes to astrocytosis in TAU58/2 mice and limits learning deficits, while other deficits and neuropathological changes appear to be independent of the presence of B-cells/antibodies.


Assuntos
Autoanticorpos , Linfócitos B/imunologia , Gliose/genética , Gliose/imunologia , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/imunologia , Proteínas tau/genética , Proteínas tau/imunologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos , Mutação , Proteínas tau/metabolismo
16.
Front Mol Neurosci ; 12: 231, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611772

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with limited treatment and no cure. Mutations in profilin 1 were identified as a cause of familial ALS (fALS) in 2012. We investigated the functional impact of mutant profilin 1 expression in spinal cords during mouse development. We developed a novel mouse model with the expression of profilin 1 C71G under the control of the Hb9 promoter, targeting expression to α-motor neurons in the spinal cord during development. Embryos of transgenic mice showed evidence of a significant reduction of brachial nerve diameter and a loss of Mendelian inheritance. Despite the lack of transgene expression, adult mice presented with significant motor deficits. Transgenic mice had a significant reduction in the number of motor neurons in the spinal cord. Further analysis of these motor neurons in aged transgenic mice revealed reduced levels of TDP-43 and ChAT expression. Although profilin 1 C71G was only expressed during development, adult mice presented with some ALS-associated pathology and motor symptoms. This study highlights the effect of profilin 1 during neurodevelopment and the impact that this may have in later ALS.

17.
ACS Appl Mater Interfaces ; 10(30): 25127-25134, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979564

RESUMO

The culturing of primary neurons represents a central pillar of neuroscience research. Primary neurons are derived directly from brain tissue and recapitulate key aspects of neuronal development in an in vitro setting. Unlike neural stem cells, primary neurons do not divide; thus, initial attachment of cells to a suitable substrate is critical. Commonly used polylysine substrates can suffer from batch variability owing to their polymeric nature. Herein, we report the use of chemically well-defined, self-assembling tetrapeptides as substrates for primary neuronal culture. These water-soluble peptides assemble into fibers which facilitate adhesion and development of primary neurons, their long-term survival (>40 days), synaptic maturation, and electrical activity. Furthermore, these substrates are permissive toward neuronal transfection and transduction which, coupled with their uniformity and reproducible nature, make them suitable for a wide variety of applications in neuroscience.


Assuntos
Nanofibras , Células Cultivadas , Células-Tronco Neurais , Neurônios , Peptídeos , Polilisina
18.
Nat Commun ; 8(1): 473, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883427

RESUMO

Neuronal excitotoxicity induced by aberrant excitation of glutamatergic receptors contributes to brain damage in stroke. Here we show that tau-deficient (tau-/-) mice are profoundly protected from excitotoxic brain damage and neurological deficits following experimental stroke, using a middle cerebral artery occlusion with reperfusion model. Mechanistically, we show that this protection is due to site-specific inhibition of glutamate-induced and Ras/ERK-mediated toxicity by accumulation of Ras-inhibiting SynGAP1, which resides in a post-synaptic complex with tau. Accordingly, reducing SynGAP1 levels in tau-/- mice abolished the protection from pharmacologically induced excitotoxicity and middle cerebral artery occlusion-induced brain damage. Conversely, over-expression of SynGAP1 prevented excitotoxic ERK activation in wild-type neurons. Our findings suggest that tau mediates excitotoxic Ras/ERK signaling by controlling post-synaptic compartmentalization of SynGAP1.Excitotoxicity contributes to neuronal injury following stroke. Here the authors show that tau promotes excitotoxicity by a post-synaptic mechanism, involving site-specific control of ERK activation, in a mouse model of stroke.


Assuntos
Lesões Encefálicas/genética , Modelos Animais de Doenças , Acidente Vascular Cerebral/genética , Proteínas tau/genética , Animais , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Humanos , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Transdução de Sinais/genética , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/metabolismo , Sinaptossomos/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas tau/deficiência
19.
Neurosci Lett ; 631: 24-29, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27521751

RESUMO

Frontotemporal dementia (FTD) presents clinically with behavioral changes including disinhibition. Mutations in the tau-encoding MAPT gene identified in familial cases of FTD have been used to generate transgenic mouse models of the human condition. Here, we report behavioral changes in a recently developed P301S mutant tau transgenic mouse, including disinhibition-like behavior in the elevated plus maze and hyperactivity in the open field arena. Furthermore, histological analysis revealed the amygdala as a primary and early site of pathological tau deposition in these mice. Taken together, neuropathological and behavioral changes in P301S tau transgenic mice resemble features of human FTD.


Assuntos
Comportamento Animal/fisiologia , Demência Frontotemporal/genética , Demência Frontotemporal/psicologia , Proteínas tau/genética , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/genética , Modelos Animais de Doenças , Humanos , Hipercinese/genética , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora , Mutação , Proteínas tau/metabolismo
20.
Science ; 354(6314): 904-908, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27856911

RESUMO

Amyloid-ß (Aß) toxicity in Alzheimer's disease (AD) is considered to be mediated by phosphorylated tau protein. In contrast, we found that, at least in early disease, site-specific phosphorylation of tau inhibited Aß toxicity. This specific tau phosphorylation was mediated by the neuronal p38 mitogen-activated protein kinase p38γ and interfered with postsynaptic excitotoxic signaling complexes engaged by Aß. Accordingly, depletion of p38γ exacerbated neuronal circuit aberrations, cognitive deficits, and premature lethality in a mouse model of AD, whereas increasing the activity of p38γ abolished these deficits. Furthermore, mimicking site-specific tau phosphorylation alleviated Aß-induced neuronal death and offered protection from excitotoxicity. Our work provides insights into postsynaptic processes in AD pathogenesis and challenges a purely pathogenic role of tau phosphorylation in neuronal toxicity.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Neurotoxinas/antagonistas & inibidores , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteína Quinase 12 Ativada por Mitógeno/genética , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa