Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cardiovasc Pharmacol ; 81(4): 259-269, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36668724

RESUMO

ABSTRACT: Mitochondrial dysfunction plays a key role in the development of heart failure, but targeted therapeutic interventions remain elusive. Previous studies have shown coenzyme Q10 (CoQ10) insufficiency in patients with heart disease with undefined mechanism and modest effectiveness of CoQ10 supplement therapy. Using 2 transgenic mouse models of cardiomyopathy owing to cardiac overexpression of Mst1 (Mst1-TG) or ß 2 -adrenoceptor (ß 2 AR-TG), we studied changes in cardiac CoQ10 content and alterations in CoQ10 biosynthesis genes. We also studied in Mst1-TG mice effects of CoQ10, delivered by oral or injection regimens, on both cardiac CoQ10 content and cardiomyopathy phenotypes. High performance liquid chromatography and RNA sequencing revealed in both models significant reduction in cardiac content of CoQ10 and downregulation of most genes encoding CoQ10 biosynthesis enzymes. Mst1-TG mice with 70% reduction in cardiac CoQ10 were treated with CoQ10 either by oral gavage or i.p. injection for 4-8 weeks. Oral regimens failed in increasing cardiac CoQ10 content, whereas injection regimen effectively restored the cardiac CoQ10 level in a time-dependent manner. However, CoQ10 restoration in Mst1-TG mice did not correct mitochondrial dysfunction measured by energy metabolism, downregulated expression of marker proteins, and oxidative stress nor to preserve cardiac contractile function. In conclusion, mouse models of cardiomyopathy exhibited myocardial CoQ10 deficiency likely due to suppressed endogenous synthesis of CoQ10. In contrast to ineffectiveness of oral administration, CoQ10 administration by injection regimen in cardiomyopathy mice restored cardiac CoQ10 content, which, however, failed in achieving detectable efficacy at molecular and global functional levels.


Assuntos
Cardiomiopatias , Ubiquinona , Camundongos , Animais , Ubiquinona/metabolismo , Ubiquinona/uso terapêutico , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/genética , Coração , Camundongos Transgênicos
2.
Theranostics ; 13(2): 560-577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632235

RESUMO

Rationale: Chemotherapy is a common clinical strategy for cancer treatment. However, the accompanied cardiomyopathy renders cancer patients under risk of another life-threatening condition. Whereas Hippo pathway is known to play key roles in both cancerogenesis and heart disease, it remains unclear whether Hippo pathway activation mediates chemotherapy-induced cardiomyopathy. Methods and Results: In human breast cancer cells, doxorubicin (DOX) significantly induced upregulation of Hippo kinase Mst1, inhibitory phosphorylation of YAP, mitochondrial damage, reduced cell viability and increased apoptosis. Hippo pathway inactivation by Mst1-siRNA transfection effectively improved cell survival and mitigated mitochondrial damage and cell apoptosis. Another anti-cancer drug YAP inhibitor verteporfin also induced lower cancer cell viability, apoptosis and mitochondrial injury. Chronic treatment with DOX in vivo (4 mg/kg/week for 6 weeks) caused mitochondrial damage and dysfunction, oxidative stress and cardiac fibrosis, while acute DOX treatment (16 mg/kg single bolus) also induced myocardial oxidative stress and mitochondrial abnormalities. Chronic treatment with verteporfin (2 months) resulted in cardiomyopathy phenotypes comparable to that by chronic DOX regimen. In transgenic mice with cardiac overexpression of kinase-dead mutant Mst1 gene, these adverse cardiac effects of DOX were significantly attenuated relative to wild-type littermates. Conclusions: Anti-cancer action of both DOX and verteporfin is associated with Hippo pathway activation. Such action on cardiac Hippo pathway mediates mitochondrial damage and cardiomyopathy.


Assuntos
Antineoplásicos , Cardiomiopatias , Via de Sinalização Hippo , Neoplasias , Animais , Humanos , Camundongos , Apoptose , Cardiomiopatias/induzido quimicamente , Cardiotoxicidade/etiologia , Doxorrubicina/farmacologia , Via de Sinalização Hippo/efeitos dos fármacos , Camundongos Transgênicos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Neoplasias/tratamento farmacológico , Estresse Oxidativo , Verteporfina/farmacologia , Verteporfina/uso terapêutico , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico
3.
Theranostics ; 11(18): 8993-9008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522223

RESUMO

Rationale: Mitochondrial dysfunction facilitates heart failure development forming a therapeutic target, but the mechanism involved remains unclear. We studied whether the Hippo signaling pathway mediates mitochondrial abnormalities that results in onset of dilated cardiomyopathy (DCM). Methods: Mice with DCM due to overexpression of Hippo pathway kinase Mst1 were studied. DCM phenotype was evident in adult animals but contractile dysfunction was identified as an early sign of DCM at 3 weeks postnatal. Electron microscopy, multi-omics and biochemical assays were employed. Results: In 3-week and adult DCM mouse hearts, cardiomyocyte mitochondria exhibited overt structural abnormalities, smaller size and greater number. RNA sequencing revealed comprehensive suppression of nuclear-DNA (nDNA) encoded gene-sets involved in mitochondria turnover and all aspects of metabolism. Changes in cardiotranscriptome were confirmed by lower protein levels of multiple mitochondrial proteins in DCM heart of both ages. Mitochondrial DNA-encoded genes were also downregulated; due apparently to repression of nDNA-encoded transcriptional factors. Lipidomics identified remodeling in cardiolipin acyl-chains, increased acylcarnitine content but lower coenzyme Q10 level. Mitochondrial dysfunction was featured by lower ATP content and elevated levels of lactate, branched-chain amino acids and reactive oxidative species. Mechanistically, inhibitory YAP-phosphorylation was enhanced, which was associated with attenuated binding of transcription factor TEAD1. Numerous suppressed mitochondrial genes were identified as YAP-targets. Conclusion: Hippo signaling activation mediates mitochondrial damage by repressing mitochondrial genes, which causally promotes the development of DCM. The Hippo pathway therefore represents a therapeutic target against mitochondrial dysfunction in cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada/patologia , Via de Sinalização Hippo/fisiologia , Mitocôndrias/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Cardiomiopatias/metabolismo , Cardiomiopatia Dilatada/metabolismo , China , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa